On representations of complex hyperbolic lattices

被引:0
|
作者
Wang, M [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following superrigidity type theorem for complex hyperbolic lattices is proved in this paper. Let X = Gamma\B-n be a compact complex ball quotient, n = 2 or 3. Suppose H-1,H-1(X, C) boolean AND H-2(X, Z) is generated by the Kahler class of X. Then any representation of Gamma in GL(n + 1, C) can either be deformed to a unitary representation or be extended to a homomorphism from SU(n, 1) into GL(n + 1, C).
引用
下载
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [41] Topological Hyperbolic Lattices
    Yu, Sunkyu
    Piao, Xianji
    Park, Namkyoo
    PHYSICAL REVIEW LETTERS, 2020, 125 (05)
  • [42] Percolation on hyperbolic lattices
    Baek, Seung Ki
    Minnhagen, Petter
    Kim, Beom Jun
    PHYSICAL REVIEW E, 2009, 79 (01)
  • [43] LATTICES IN THE HYPERBOLIC PLANE
    HUBER, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 458 : 127 - 156
  • [44] REPRESENTATIONS OF DISTRIBUTIVE LATTICES AS LATTICES OF FUNCTIONS
    ANDERSON, FW
    BLAIR, RL
    MATHEMATISCHE ANNALEN, 1961, 143 (03) : 187 - 211
  • [45] REPRESENTATIONS OF ALGEBRAIC LATTICES
    HERRMANN, B
    WOLTER, F
    ALGEBRA UNIVERSALIS, 1994, 31 (04) : 612 - 613
  • [46] REPRESENTATIONS OF LATTICES BY SETS
    BIRKHOFF, G
    FRINK, O
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (03) : 273 - 273
  • [47] REPRESENTATIONS OF LATTICES BY SETS
    BIRKHOFF, G
    FRINK, O
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 64 (SEP) : 299 - 316
  • [48] On Minimal Covolume Hyperbolic Lattices
    Kellerhals, Ruth
    MATHEMATICS, 2017, 5 (03):
  • [49] Eigenmodes of the Laplacian on hyperbolic lattices
    Petermann, Eric
    Hinrichsen, Haye
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [50] Noncoherence of arithmetic hyperbolic lattices
    Kapovich, Michael
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 39 - 71