On representations of complex hyperbolic lattices

被引:0
|
作者
Wang, M [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following superrigidity type theorem for complex hyperbolic lattices is proved in this paper. Let X = Gamma\B-n be a compact complex ball quotient, n = 2 or 3. Suppose H-1,H-1(X, C) boolean AND H-2(X, Z) is generated by the Kahler class of X. Then any representation of Gamma in GL(n + 1, C) can either be deformed to a unitary representation or be extended to a homomorphism from SU(n, 1) into GL(n + 1, C).
引用
下载
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [31] Configurations of flags and representations of surface groups in complex hyperbolic geometry
    Julien Marché
    Pierre Will
    Geometriae Dedicata, 2012, 156 : 49 - 70
  • [32] Configurations of flags and representations of surface groups in complex hyperbolic geometry
    Marche, Julien
    Will, Pierre
    GEOMETRIAE DEDICATA, 2012, 156 (01) : 49 - 70
  • [33] A Milnor-Wood inequality for complex hyperbolic lattices in quaternionic space
    Garcia-Prada, Oscar
    Toledo, Domingo
    GEOMETRY & TOPOLOGY, 2011, 15 (02): : 1013 - 1027
  • [34] Large hyperbolic lattices
    F. Grunewald
    G. A. Noskov
    Algebra and Logic, 2009, 48 : 99 - 107
  • [35] Large hyperbolic lattices
    Grunewald, F.
    Noskov, G. A.
    ALGEBRA AND LOGIC, 2009, 48 (02) : 99 - 107
  • [36] Directions in hyperbolic lattices
    Marklof, Jens
    Vinogradov, Ilya
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 740 : 161 - 186
  • [37] Crystallography of hyperbolic lattices
    Boettcher, Igor
    Gorshkov, Alexey, V
    Kollar, Alicia J.
    Maciejko, Joseph
    Rayan, Steven
    Thomale, Ronny
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [38] Crossing on hyperbolic lattices
    Gu, Hang
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2012, 85 (05)
  • [39] REFLECTIVE HYPERBOLIC LATTICES
    VINBERG, EB
    DOKLADY AKADEMII NAUK SSSR, 1983, 272 (06): : 1298 - 1301
  • [40] TREES ON HYPERBOLIC LATTICES
    Nemeth, L.
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 353 - 360