On representations of complex hyperbolic lattices

被引:0
|
作者
Wang, M [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following superrigidity type theorem for complex hyperbolic lattices is proved in this paper. Let X = Gamma\B-n be a compact complex ball quotient, n = 2 or 3. Suppose H-1,H-1(X, C) boolean AND H-2(X, Z) is generated by the Kahler class of X. Then any representation of Gamma in GL(n + 1, C) can either be deformed to a unitary representation or be extended to a homomorphism from SU(n, 1) into GL(n + 1, C).
引用
下载
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [21] New non-arithmetic complex hyperbolic lattices
    Deraux, Martin
    Parker, John R.
    Paupert, Julien
    INVENTIONES MATHEMATICAE, 2016, 203 (03) : 681 - 771
  • [22] Local rigidity for complex hyperbolic lattices and Hodge theory
    Klingler, B.
    INVENTIONES MATHEMATICAE, 2011, 184 (03) : 455 - 498
  • [23] Superrigidity of maximal measurable cocycles of complex hyperbolic lattices
    F. Sarti
    A. Savini
    Mathematische Zeitschrift, 2022, 300 : 421 - 443
  • [24] Simpson's theory and superrigidity of complex hyperbolic lattices
    Comptes Rendus L'Acad Sci Ser I Math, 9 (1061):
  • [25] New non-arithmetic complex hyperbolic lattices
    Martin Deraux
    John R. Parker
    Julien Paupert
    Inventiones mathematicae, 2016, 203 : 681 - 771
  • [26] Eichler-Shimura isomorphism for complex hyperbolic lattices
    Kim, Inkang
    Zhang, Genkai
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 452 - 460
  • [27] Complex hyperbolic representations of PSL2( R )
    Stolowicz, Gonzalo Emiliano Ruiz
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3723 - 3764
  • [28] Representations of free Fuchsian groups in complex hyperbolic space
    Gusevskii, N
    Parker, JR
    TOPOLOGY, 2000, 39 (01) : 33 - 60
  • [29] Local rigidity of complex hyperbolic lattices in semisimple Lie groups
    Kim, Inkang
    Zhang, Genkai
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 165 (01) : 179 - 191
  • [30] Band Theory and Boundary Modes of High-Dimensional Representations of Infinite Hyperbolic Lattices
    Cheng, Nan
    Serafin, Francesco
    McInerney, James
    Rocklin, Zeb
    Sun, Kai
    Mao, Xiaoming
    PHYSICAL REVIEW LETTERS, 2022, 129 (08)