Let Г be a torsion-free uniform lattice of SU(m, 1), m > 1. Let G be either SU(p, 2) with p ≥ 2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm Sp}(2,\mathbb {R})}$$\end{document} or SO(p, 2) with p ≥ 3. The symmetric spaces associated to these G’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the correspondence between representations of fundamental groups of Kähler manifolds and Higgs bundles we study representations of the lattice Г into G. We prove that the Toledo invariant associated to such a representation satisfies a Milnor-Wood type inequality and that in case of equality necessarily G = SU(p, 2) with p ≥ 2m and the representation is reductive, faithful, discrete, and stabilizes a copy of complex hyperbolic space (of maximal possible induced holomorphic sectional curvature) holomorphically and totally geodesically embedded in the Hermitian symmetric space SU(p, 2)/S(U(p) × U(2)), on which it acts cocompactly.