Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type

被引:0
|
作者
Vincent Koziarz
Julien Maubon
机构
[1] Université Henri Poincaré,Institut Elie Cartan
来源
Geometriae Dedicata | 2008年 / 137卷
关键词
Complex hyperbolic space; Lattice; Hermitian symmetric space; Toledo invariant; Higgs bundles; Rigidity;
D O I
暂无
中图分类号
学科分类号
摘要
Let Г be a torsion-free uniform lattice of SU(m, 1), m > 1. Let G be either SU(p, 2) with p ≥ 2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Sp}(2,\mathbb {R})}$$\end{document} or SO(p, 2) with p ≥ 3. The symmetric spaces associated to these G’s are the classical bounded symmetric domains of rank 2, with the exceptions of SO*(8)/U(4) and SO*(10)/U(5). Using the correspondence between representations of fundamental groups of Kähler manifolds and Higgs bundles we study representations of the lattice Г into G. We prove that the Toledo invariant associated to such a representation satisfies a Milnor-Wood type inequality and that in case of equality necessarily G = SU(p, 2) with p ≥ 2m and the representation is reductive, faithful, discrete, and stabilizes a copy of complex hyperbolic space (of maximal possible induced holomorphic sectional curvature) holomorphically and totally geodesically embedded in the Hermitian symmetric space SU(p, 2)/S(U(p) × U(2)), on which it acts cocompactly.
引用
收藏
页码:85 / 111
页数:26
相关论文
共 50 条