Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data

被引:40
|
作者
Cheng, K. O. [1 ]
Law, N. F. [1 ]
Siu, W. C. [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Ctr Signal Proc, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn EIE, Hong Kong, Hong Kong, Peoples R China
关键词
Missing value imputation; Biclustering; Iterative estimation; Gene expression analysis; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; CLASSIFICATION;
D O I
10.1016/j.patcog.2011.10.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1281 / 1289
页数:9
相关论文
共 50 条
  • [1] A Bicluster-Based Sequential Interpolation Imputation Method for Estimation of Missing Values in Microarray Gene Expression Data
    Das, Chandra
    Bose, Shilpi
    Chattopadhyay, Samiran
    Chattopadhyay, Matangini
    Hossain, Alamgir
    CURRENT BIOINFORMATICS, 2017, 12 (02) : 118 - 130
  • [2] Iterative bicluster-based Bayesian principal component analysis and least squares for missing-value imputation in microarray and RNA-sequencing data
    Soemartojo, Saskya Mary
    Siswantining, Titin
    Fernando, Yoel
    Sarwinda, Devvi
    Al-Ash, Herley Shaori
    Syarofina, Sarah
    Saputra, Noval
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (09) : 8741 - 8759
  • [3] A Bicluster-Based Bayesian Principal Component Analysis Method for Microarray Missing Value Estimation
    Meng, Fanchi
    Cai, Cheng
    Yan, Hong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (03) : 863 - 871
  • [4] A Novel Interpolation Based Missing Value Estimation Method to Predict Missing Values in Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Dutta, Sourav
    Chattopadhyay, Samiran
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, DEVICES AND INTELLIGENT SYSTEMS (CODLS), 2012, : 318 - 321
  • [5] Missing values estimation in microarray data with partial least squares regression
    Yang, Kun
    Li, Jianzhong
    Wang, Chaokun
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 662 - 669
  • [6] Effectiveness of Different Partition Based Clustering Algorithms for Estimation of Missing Values in Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Chakraborty, Abirlal
    Chattopadhyay, Samiran
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 2, 2013, 177 : 37 - +
  • [7] A modified local least squares-based missing value estimation method in microarray gene expression data
    Bose, Shilpi
    Das, Chandra
    Gangopadhyay, Tamaghna
    Chattopadhyay, Samiran
    2013 SECOND INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND SECURITY (ADCONS 2013), 2013, : 18 - 23
  • [8] LSimpute: accurate estimation of missing values in microarray data with least squares methods
    Bo, TH
    Dysvik, J
    Jonassen, I
    NUCLEIC ACIDS RESEARCH, 2004, 32 (03) : e34
  • [9] Missing value estimation for DNA microarray gene expression data: local least squares imputation
    Kim, H
    Golub, GH
    Park, H
    BIOINFORMATICS, 2005, 21 (02) : 187 - 198
  • [10] Imputation of missing values in DNA microarray gene expression data
    Kim, H
    Golub, GH
    Park, H
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 572 - 573