Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data

被引:40
|
作者
Cheng, K. O. [1 ]
Law, N. F. [1 ]
Siu, W. C. [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Ctr Signal Proc, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn EIE, Hong Kong, Hong Kong, Peoples R China
关键词
Missing value imputation; Biclustering; Iterative estimation; Gene expression analysis; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; CLASSIFICATION;
D O I
10.1016/j.patcog.2011.10.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1281 / 1289
页数:9
相关论文
共 50 条
  • [31] A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    Deris, Safaai
    CURRENT BIOINFORMATICS, 2014, 9 (01) : 18 - 22
  • [32] NONITERATIVE LEAST-SQUARES ESTIMATION OF MISSING VALUES IN HYPER-GRAECO-LATIN SQUARE DESIGNS
    SUBRAMANI, J
    BIOMETRICAL JOURNAL, 1993, 35 (04) : 465 - 470
  • [33] Missing Value Estimation for Gene Expression Profile Data
    Wang Xuesong
    Liu Qingfeng
    Cheng Yuhu
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (04): : 673 - 677
  • [34] Iterative rank-order normalization of gene expression microarray data
    Welsh, Eric A.
    Eschrich, Steven A.
    Berglund, Anders E.
    Fenstermacher, David A.
    BMC BIOINFORMATICS, 2013, 14
  • [35] Iterative rank-order normalization of gene expression microarray data
    Eric A Welsh
    Steven A Eschrich
    Anders E Berglund
    David A Fenstermacher
    BMC Bioinformatics, 14
  • [36] Improved KNN Imputation for Missing Values in Gene Expression Data
    Keerin, Phimmarin
    Boongoen, Tossapon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 4009 - 4025
  • [37] Implementation of Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIAS) on Microarray of Alzheimer's Gene Expression Data
    Wutun, Theresia B. P.
    Bustamana, Alhadi
    Siswantining, Titin
    PROCEEDINGS OF THE SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH) 2018, 2019, 2084
  • [38] Iterative clustering analysis for grouping missing data in gene expression profiles
    Kim, Dae-Won
    Kang, Bo-Yeong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 129 - 138
  • [39] LINEAR MINIMUM MEAN-SQUARE ERROR ESTIMATION BASED ON HIGH-DIMENSIONAL DATA WITH MISSING VALUES
    Zamanighomi, Mahdi
    Wang, Zhengdao
    Slavakis, Konstantinos
    Giannakis, Georgios B.
    2014 48TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2014,
  • [40] A comprehensive fuzzy-based framework for cancer microarray data gene expression analysis
    Wang, Zhenyu
    Palade, Vasile
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 1003 - 1010