Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data

被引:40
|
作者
Cheng, K. O. [1 ]
Law, N. F. [1 ]
Siu, W. C. [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Ctr Signal Proc, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn EIE, Hong Kong, Hong Kong, Peoples R China
关键词
Missing value imputation; Biclustering; Iterative estimation; Gene expression analysis; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; CLASSIFICATION;
D O I
10.1016/j.patcog.2011.10.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1281 / 1289
页数:9
相关论文
共 50 条
  • [41] Probabilistic estimation of microarray data reliability and underlying gene expression
    Sven Bilke
    Thomas Breslin
    Mikael Sigvardsson
    BMC Bioinformatics, 4
  • [42] Class Specific Gene Expression Estimation and Classification in Microarray Data
    Islam, Atiq
    Iftekharuddin, Khan M.
    George, E. Olusegun
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 1678 - +
  • [43] Probabilistic estimation of microarray data reliability and underlying gene expression
    Bilke, S
    Breslin, T
    Sigvardsson, M
    BMC BIOINFORMATICS, 2003, 4 (1)
  • [45] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [46] Smoothing Blemished Gene Expression Microarray Data via Missing Value Imputation
    Cai, Zhipeng
    Shi, Yi
    Song, Meng
    Goebel, Randy
    Lin, Guohui
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 5688 - 5691
  • [47] An efficient ensemble method for missing value imputation in microarray gene expression data
    Xinshan Zhu
    Jiayu Wang
    Biao Sun
    Chao Ren
    Ting Yang
    Jie Ding
    BMC Bioinformatics, 22
  • [48] An efficient ensemble method for missing value imputation in microarray gene expression data
    Zhu, Xinshan
    Wang, Jiayu
    Sun, Biao
    Ren, Chao
    Yang, Ting
    Ding, Jie
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [49] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Johannes Tuikkala
    Laura L Elo
    Olli S Nevalainen
    Tero Aittokallio
    BMC Bioinformatics, 9
  • [50] Tumor classification by partial least squares using microarray gene expression data
    Nguyen, DV
    Rocke, DM
    BIOINFORMATICS, 2002, 18 (01) : 39 - 50