Missing values estimation in microarray data with partial least squares regression

被引:0
|
作者
Yang, Kun [1 ]
Li, Jianzhong
Wang, Chaokun
机构
[1] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Microarray data usually contain missing values, thus estimating these missing values is an important preprocessing step. This paper proposes an estimation method of missing values based on Partial Least Squares (PLS) regression. The method is feasible for microarray data, because of the characteristics of PLS regression. We compared our method with three methods, including ROWaverage, KNNimpute and LLSimpute, on different data and various missing probabilities. The experimental results show that the proposed method is accurate and robust for estimating missing values.
引用
收藏
页码:662 / 669
页数:8
相关论文
共 50 条
  • [1] LSimpute: accurate estimation of missing values in microarray data with least squares methods
    Bo, TH
    Dysvik, J
    Jonassen, I
    NUCLEIC ACIDS RESEARCH, 2004, 32 (03) : e34
  • [2] Missing Values Estimation for Time Course Gene Expression Data Using the Sequential Partial Least Squares Regression Fitting
    Kim, Kyungsook
    Oh, Mira
    Baek, Jangsun
    Son, Young Sook
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (02) : 275 - 290
  • [3] Partial least squares proportional hazard regression for application to DNA microarray survival data
    Nguyen, DV
    Rocke, DM
    BIOINFORMATICS, 2002, 18 (12) : 1625 - 1632
  • [4] Missing value estimation for DNA microarray gene expression data: local least squares imputation
    Kim, H
    Golub, GH
    Park, H
    BIOINFORMATICS, 2005, 21 (02) : 187 - 198
  • [5] Outlier detection and ambiguity detection for microarray data in probabilistic discriminant partial least squares regression
    Botella, C.
    Ferre, J.
    Boque, R.
    JOURNAL OF CHEMOMETRICS, 2010, 24 (7-8) : 434 - 443
  • [6] Partial least-squares Regression with Unlabeled Data
    Gujral, Paman
    Wise, Barry
    Amrhein, Michael
    Bonvin, Dominique
    PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 102 - 105
  • [7] Partial least squares regression
    deJong, S
    Phatak, A
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 25 - 36
  • [8] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [9] Missing Value Estimation for Microarray Data by Bayesian Principal Component Analysis and Iterative Local Least Squares
    Shi, Fuxi
    Zhang, Dan
    Chen, Jun
    Karimi, Hamid Reza
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [10] Partial Least Squares Regression based Facial Age Estimation
    Zeng, Xue-Qiang
    Xiang, Run
    Zou, Hua-Xing
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 416 - 421