Missing values estimation in microarray data with partial least squares regression

被引:0
|
作者
Yang, Kun [1 ]
Li, Jianzhong
Wang, Chaokun
机构
[1] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Microarray data usually contain missing values, thus estimating these missing values is an important preprocessing step. This paper proposes an estimation method of missing values based on Partial Least Squares (PLS) regression. The method is feasible for microarray data, because of the characteristics of PLS regression. We compared our method with three methods, including ROWaverage, KNNimpute and LLSimpute, on different data and various missing probabilities. The experimental results show that the proposed method is accurate and robust for estimating missing values.
引用
收藏
页码:662 / 669
页数:8
相关论文
共 50 条
  • [31] Estimation of missing data in analysis of covariance: A least-squares approach
    Ogbonnaya, Chibueze E.
    Uzochukwu, Emeka C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (07) : 1902 - 1909
  • [32] Least-squares parameter estimation for systems with irregularly missing data
    Ding, Feng
    Ding, Jie
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2010, 24 (07) : 540 - 553
  • [33] Partial least squares Cox regression for genome-wide data
    Nygard, Stale
    Borgan, Ornulf
    Lingjaerde, Ole Christian
    Storvold, Hege Leite
    LIFETIME DATA ANALYSIS, 2008, 14 (02) : 179 - 195
  • [34] Application of partial least squares regression in data analysis of mining subsidence
    Feng, ZD
    Lu, XS
    Shi, YF
    Hua, P
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 : 148 - 150
  • [35] Kernelized partial least squares for feature reduction and classification of gene microarray data
    Land, Walker H.
    Qiao, Xingye
    Margolis, Daniel E.
    Ford, William S.
    Paquette, Christopher T.
    Perez-Rogers, Joseph F.
    Borgia, Jeffrey A.
    Yang, Jack Y.
    Deng, Youping
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [36] Tumor classification by partial least squares using microarray gene expression data
    Nguyen, DV
    Rocke, DM
    BIOINFORMATICS, 2002, 18 (01) : 39 - 50
  • [37] Partial Least Squares Regression Analysis: Example of Motor Fitness Data
    Serbetar, Ivan
    CROATIAN JOURNAL OF EDUCATION-HRVATSKI CASOPIS ZA ODGOJ I OBRAZOVANJE, 2012, 14 (04): : 917 - 932
  • [38] Partial least squares Cox regression for genome-wide data
    Ståle Nygård
    Ørnulf Borgan
    Ole Christian Lingjærde
    Hege Leite Størvold
    Lifetime Data Analysis, 2008, 14 : 179 - 195
  • [39] Using Partial Least Squares Regression to Analyze Cellular Response Data
    Kreeger, Pamela K.
    SCIENCE SIGNALING, 2013, 6 (271)
  • [40] Brightness-normalized Partial Least Squares Regression for hyperspectral data
    Feilhauer, Hannes
    Asner, Gregory P.
    Martin, Roberta E.
    Schmidtlein, Sebastian
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (12-13): : 1947 - 1957