Missing values estimation in microarray data with partial least squares regression

被引:0
|
作者
Yang, Kun [1 ]
Li, Jianzhong
Wang, Chaokun
机构
[1] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Microarray data usually contain missing values, thus estimating these missing values is an important preprocessing step. This paper proposes an estimation method of missing values based on Partial Least Squares (PLS) regression. The method is feasible for microarray data, because of the characteristics of PLS regression. We compared our method with three methods, including ROWaverage, KNNimpute and LLSimpute, on different data and various missing probabilities. The experimental results show that the proposed method is accurate and robust for estimating missing values.
引用
收藏
页码:662 / 669
页数:8
相关论文
共 50 条
  • [41] Data Analysis of Roadway Attributes through Partial Least Squares Regression
    Li, Weiguo
    Zhang, Hanjie
    Du, Xiaoping
    Qian, Kun
    Li, Cuiying
    2010 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND FINANCIAL ENGINEERING (ICIFE), 2010, : 466 - 468
  • [42] Application of partial least squares regression in data analysis of mining subsidence
    FENG Zun-de~(1
    2. Xuzhou Normal University
    Transactions of Nonferrous Metals Society of China, 2005, (S1) : 156 - 158
  • [43] An Iterative Locally Auto-Weighted Least Squares Method for Microarray Missing Value Estimation
    Yu, Zeng
    Li, Tianrui
    Horng, Shi-Jinn
    Pan, Yi
    Wang, Hongjun
    Jing, Yunge
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (01) : 21 - 33
  • [44] On partial least-squares estimation in scalar-on-function regression models
    Saricam, Semanur
    Beyaztas, Ufuk
    Asikgil, Baris
    Shang, Han Lin
    JOURNAL OF CHEMOMETRICS, 2022, 36 (12)
  • [45] NONITERATIVE LEAST-SQUARES ESTIMATION OF MISSING VALUES IN REPLICATED LATIN SQUARE DESIGNS
    SUBRAMANI, J
    BIOMETRICAL JOURNAL, 1991, 33 (08) : 999 - 1011
  • [46] The Application of Nonlinear Partial Least Squares Regression in Warship Maintenance Cost Estimation
    Liu Wenjun
    Li Fenghuan
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON INNOVATION AND MANAGEMENT, VOLS I AND II, 2014, : 1481 - 1485
  • [47] Improving plant biomass estimation in the field using partial least squares regression and ridge regression
    Ohsowski, Brian M.
    Dunfield, Kari E.
    Klironomos, John N.
    Hart, Miranda M.
    BOTANY, 2016, 94 (07) : 501 - 508
  • [48] Microarray missing value imputation by iterated local least squares
    Cai, ZP
    Heydari, M
    Lin, GH
    PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE, 2006, 3 : 159 - 168
  • [49] Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS
    Yaroshchyk, P.
    Death, D. L.
    Spencer, S. J.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2012, 27 (01) : 92 - 98
  • [50] Kernel PCA Regression for Missing Data Estimation in DNA Microarray Analysis
    Shan, Ying
    Deng, Guang
    ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 1477 - 1480