CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

被引:432
|
作者
Tateno, Keisuke [1 ,2 ]
Tombari, Federico [1 ]
Laina, Iro [1 ]
Navab, Nassir [1 ,3 ]
机构
[1] CAMP TU Munich, Munich, Germany
[2] Canon Inc, Tokyo, Japan
[3] Johns Hopkins Univ, Baltimore, MD USA
关键词
D O I
10.1109/CVPR.2017.695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.
引用
收藏
页码:6565 / 6574
页数:10
相关论文
共 50 条
  • [41] CMDS-SLAM: real-time efficient centralized multi-robot dense surfel SLAM
    Zuo, Chenle
    Feng, Zhao
    Xiao, Xiaohui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [42] Real-time SLAM relocalisation
    Williams, Brian
    Klein, Georg
    Reid, Ian
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2244 - 2251
  • [43] Densifying SLAM for UAV Navigation by Fusion of Monocular Depth Prediction
    Habib, Yassine
    Papadakis, Panagiotis
    Le Barz, Cedric
    Fagette, Antoine
    Goncalves, Tiago
    Buche, Cedric
    2023 9TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS, ICARA, 2023, : 225 - 229
  • [44] DENSE RECONSTRUCTION FROM MONOCULAR SLAM WITH FUSION OF SPARSE MAP-POINTS AND CNN-INFERRED DEPTH
    Ji, Xiang
    Ye, Xinchen
    Xu, Hongcan
    Li, Haojie
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [45] DiT-SLAM: Real-Time Dense Visual-Inertial SLAM with Implicit Depth Representation and Tightly-Coupled Graph Optimization
    Zhao, Mingle
    Zhou, Dingfu
    Song, Xibin
    Chen, Xiuwan
    Zhang, Liangjun
    SENSORS, 2022, 22 (09)
  • [46] Blurring prediction in Monocular SLAM
    Russo, Ludovico Orlando
    Farulla, Giuseppe Airo
    Indaco, Marco
    Rosa, Stefano
    Rolfo, Daniele
    Bona, Basilio
    2013 8TH INTERNATIONAL DESIGN AND TEST SYMPOSIUM (IDT), 2013,
  • [47] Inverse depth to depth conversion for monocular SLAM
    Civera, Javier
    Davison, Andrew J.
    Montiel, J. M. M.
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 2778 - +
  • [48] Inverse Depth Parametrization for Monocular SLAM
    Civera, Javier
    Davison, Andrew J.
    Montiel, J. M. Martinez
    IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) : 932 - 945
  • [49] DDN-SLAM: Real Time Dense Dynamic Neural Implicit SLAM
    Li, Mingrui
    Guo, Zhetao
    Deng, Tianchen
    Zhou, Yiming
    Ren, Yuxiang
    Wang, Hongyu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4300 - 4307
  • [50] Robust Relocalization Based on Active Loop Closure for Real-Time Monocular SLAM
    Chen, Xieyuanli
    Lu, Huimin
    Xiao, Junhao
    Zhang, Hui
    Wang, Pan
    COMPUTER VISION SYSTEMS, ICVS 2017, 2017, 10528 : 131 - 143