Densifying SLAM for UAV Navigation by Fusion of Monocular Depth Prediction

被引:1
|
作者
Habib, Yassine [1 ]
Papadakis, Panagiotis [2 ]
Le Barz, Cedric [1 ]
Fagette, Antoine [3 ]
Goncalves, Tiago [1 ]
Buche, Cedric [4 ]
机构
[1] Thales SIX GTS France, ThereSIS Lab, Palaiseau, France
[2] IMT Atlantique, Team RAMBO, Lab STICC, UMR 6285, Brest, France
[3] Thales Digital Solut, Thales Res & Technol Canada, Montreal, PQ, Canada
[4] ENIB, IRL CNRS CROSSING, Adelaide, SA, Australia
关键词
dense SLAM; monocular depth prediction; drone navigation;
D O I
10.1109/ICARA56516.2023.10125712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simultaneous Localization and Mapping (SLAM) research has reached a level of maturity enabling systems to build autonomously an accurate sparse map of the environment while localizing themselves in that map. At the same time, the use of deep learning has recently brought great improvements in Monocular Depth Prediction (MDP). Some applications such as autonomous drone navigation and obstacle avoidance require dense structure information and cannot only rely on sparse SLAM representation. We propose to densify a state-of-the-art SLAM algorithm using deep learning-based dense MDP at keyframe rate. Towards this goal, we describe a scale recovery from SLAM landmarks by minimizing a depth error metric combined with a multi-view depth refinement using a volumetric approach. We conclude with experiments that attest the added value of our approach in terms of depth estimation.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 50 条
  • [1] A Survey of UAV Visual Navigation Based on Monocular SLAM
    Wei, Wenle
    Tan, Linin
    Jin, Guodong
    Lu, Libin
    Sun, Changjiang
    PROCEEDINGS OF 2018 IEEE 4TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2018), 2018, : 1849 - 1853
  • [2] Real-time, dense UAV mapping by leveraging monocular depth prediction with monocular-inertial SLAM
    Habib, Yassine
    Papadakis, Panagiotis
    Le Barz, Cedric
    Fagette, Antoine
    Goncalves, Tiago
    Buche, Cedric
    ADVANCED ROBOTICS, 2024, 38 (21) : 1555 - 1566
  • [3] Monocular Dense SLAM with Consistent Deep Depth Prediction
    Yan, Feihu
    Wen, Jiawei
    Li, Zhaoxin
    Zhou, Zhong
    ADVANCES IN COMPUTER GRAPHICS, CGI 2021, 2021, 13002 : 113 - 124
  • [4] DRM-SLAM: Towards dense reconstruction of monocular SLAM with scene depth fusion
    Ye, Xinchen
    Ji, Xiang
    Sun, Baoli
    Chen, Shenglun
    Wang, Zhihui
    Li, Haojie
    NEUROCOMPUTING, 2020, 396 (396) : 76 - 91
  • [5] Inverse depth to depth conversion for monocular SLAM
    Civera, Javier
    Davison, Andrew J.
    Montiel, J. M. M.
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 2778 - +
  • [6] CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction
    Tateno, Keisuke
    Tombari, Federico
    Laina, Iro
    Navab, Nassir
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6565 - 6574
  • [7] Inverse Depth Parametrization for Monocular SLAM
    Civera, Javier
    Davison, Andrew J.
    Montiel, J. M. Martinez
    IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) : 932 - 945
  • [8] Blurring prediction in Monocular SLAM
    Russo, Ludovico Orlando
    Farulla, Giuseppe Airo
    Indaco, Marco
    Rosa, Stefano
    Rolfo, Daniele
    Bona, Basilio
    2013 8TH INTERNATIONAL DESIGN AND TEST SYMPOSIUM (IDT), 2013,
  • [9] Monocular Depth Cue Fusion for Image Segmentation and Grouping in Outdoor Navigation
    Zhou, Wenhui
    Lin, Lili
    Lou, Bin
    Wei, Xuehui
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 3201 - 3206
  • [10] Unsupervised Monocular Depth Estimation for Monocular Visual SLAM Systems
    Liu, Feng
    Huang, Ming
    Ge, Hongyu
    Tao, Dan
    Gao, Ruipeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13