CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

被引:432
|
作者
Tateno, Keisuke [1 ,2 ]
Tombari, Federico [1 ]
Laina, Iro [1 ]
Navab, Nassir [1 ,3 ]
机构
[1] CAMP TU Munich, Munich, Germany
[2] Canon Inc, Tokyo, Japan
[3] Johns Hopkins Univ, Baltimore, MD USA
关键词
D O I
10.1109/CVPR.2017.695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.
引用
收藏
页码:6565 / 6574
页数:10
相关论文
共 50 条
  • [1] Real-Time Dense Monocular SLAM With Online Adapted Depth Prediction Network
    Luo, Hongcheng
    Gao, Yang
    Wu, Yuhao
    Liao, Chunyuan
    Yang, Xin
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (02) : 470 - 483
  • [2] Real-time, dense UAV mapping by leveraging monocular depth prediction with monocular-inertial SLAM
    Habib, Yassine
    Papadakis, Panagiotis
    Le Barz, Cedric
    Fagette, Antoine
    Goncalves, Tiago
    Buche, Cedric
    ADVANCED ROBOTICS, 2024, 38 (21) : 1555 - 1566
  • [3] DeepFactors: Real-Time Probabilistic Dense Monocular SLAM
    Czarnowski, Jan
    Laidlow, Tristan
    Clark, Ronald
    Davison, Andrew J.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 721 - 728
  • [4] Real-Time Dense Monocular SLAM for Augmented Reality
    Luo, Hongcheng
    Xue, Tangli
    Yang, Xin
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1237 - 1238
  • [5] NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields
    Rosinol, Antoni
    Leonard, John J.
    Carlone, Luca
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 3437 - 3444
  • [6] Monocular Dense SLAM with Consistent Deep Depth Prediction
    Yan, Feihu
    Wen, Jiawei
    Li, Zhaoxin
    Zhou, Zhong
    ADVANCES IN COMPUTER GRAPHICS, CGI 2021, 2021, 13002 : 113 - 124
  • [7] Real-time monocular object SLAM
    Galvez-Lopez, Dorian
    Salas, Marta
    Tardos, Juan D.
    Montiel, J. M. M.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 435 - 449
  • [8] Real-time Decentralized Monocular SLAM
    Bresson, Guillaume
    Aufrere, Romuald
    Chapuis, Roland
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1018 - 1023
  • [9] Multi-Level Mapping: Real-time Dense Monocular SLAM
    Greene, W. Nicholas
    Ok, Kyel
    Lommel, Peter
    Roy, Nicholas
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 833 - 840
  • [10] CNN-Based Dense Monocular Visual SLAM for Real-Time UAV Exploration in Emergency Conditions
    Steenbeek, Anne
    Nex, Francesco
    DRONES, 2022, 6 (03)