CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

被引:432
|
作者
Tateno, Keisuke [1 ,2 ]
Tombari, Federico [1 ]
Laina, Iro [1 ]
Navab, Nassir [1 ,3 ]
机构
[1] CAMP TU Munich, Munich, Germany
[2] Canon Inc, Tokyo, Japan
[3] Johns Hopkins Univ, Baltimore, MD USA
关键词
D O I
10.1109/CVPR.2017.695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.
引用
收藏
页码:6565 / 6574
页数:10
相关论文
共 50 条
  • [31] Polarimetric Dense Monocular SLAM
    Yang, Luwei
    Tan, Feitong
    Li, Ao
    Cui, Zhaopeng
    Furukawa, Yasutaka
    Tan, Ping
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3857 - 3866
  • [32] Real-Time 6-DOF Monocular Visual SLAM based on ORB-SLAM2
    Huang, Wei
    Li, Yinguo
    Hu, Fangchao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 2929 - 2932
  • [33] DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM using Single-View Depth and Gradient Predictions
    Laidlow, Tristan
    Czarnowski, Jan
    Leutenegger, Stefan
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 4068 - 4074
  • [34] TT-SLAM Dense Monocular SLAM for Planar Environments
    Wang, Xi
    Christie, Marc
    Marchand, Eric
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11690 - 11696
  • [35] ORBFusion: Real-time and Accurate dense SLAM at large scale
    Dai, Juting
    Tang, Xinyi
    Oppermann, Leif
    ADJUNCT PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT), 2017, : 124 - 129
  • [36] Real-Time Dense Visual SLAM with Neural Factor Representation
    Wei, Weifeng
    Wang, Jie
    Xie, Xiaolong
    Liu, Jie
    Su, Pengxiang
    ELECTRONICS, 2024, 13 (16)
  • [37] ElasticFusion: Real-time dense SLAM and light source estimation
    Whelan, Thomas
    Salas-Moreno, Renato F.
    Glocker, Ben
    Davison, Andrew J.
    Leutenegger, Stefan
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (14): : 1697 - 1716
  • [38] Real-Time Monocular Object-Model Aware Sparse SLAM
    Hosseinzadeh, Mehdi
    Li, Kejie
    Latif, Yasir
    Reid, Ian
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 7123 - 7129
  • [39] Orbeez-SLAM: A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping
    Chung, Chi-Ming
    Tseng, Yang-Che
    Hsu, Ya-Ching
    Shi, Xiang-Qian
    Hua, Yun-Hung
    Yeh, Jia-Fong
    Chen, Wen-Chin
    Chen, Yi-Ting
    Hsu, Winston H.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9400 - 9406
  • [40] Dense mapping for monocular-SLAM
    Aguilar-Gonzalez, Abiel
    Arias-Estrada, Miguel
    2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2016,