CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

被引:432
|
作者
Tateno, Keisuke [1 ,2 ]
Tombari, Federico [1 ]
Laina, Iro [1 ]
Navab, Nassir [1 ,3 ]
机构
[1] CAMP TU Munich, Munich, Germany
[2] Canon Inc, Tokyo, Japan
[3] Johns Hopkins Univ, Baltimore, MD USA
关键词
D O I
10.1109/CVPR.2017.695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.
引用
收藏
页码:6565 / 6574
页数:10
相关论文
共 50 条
  • [21] DRM-SLAM: Towards dense reconstruction of monocular SLAM with scene depth fusion
    Ye, Xinchen
    Ji, Xiang
    Sun, Baoli
    Chen, Shenglun
    Wang, Zhihui
    Li, Haojie
    NEUROCOMPUTING, 2020, 396 (396) : 76 - 91
  • [22] Parsimonious Real Time Monocular SLAM
    Bresson, Guillaume
    Feraud, Thomas
    Aufrere, Romuald
    Checchin, Paul
    Chapuis, Roland
    2012 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2012, : 511 - 516
  • [23] Real-time dense map fusion for stereo SLAM
    Pire, Taihu
    Baravalle, Rodrigo
    D'Alessandro, Ariel
    Civera, Javier
    ROBOTICA, 2018, 36 (10) : 1510 - 1526
  • [24] Real-Time and Scalable Incremental Segmentation on Dense SLAM
    Tateno, Keisuke
    Tombari, Federico
    Navab, Nassir
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 4465 - 4472
  • [25] Real-time surface of revolution reconstruction on dense SLAM
    Yang, Liming
    Uchiyama, Hideaki
    Normand, Jean-Marie
    Moreau, Guillaume
    Nagahara, Hajime
    Taniguchi, Rin-ichiro
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 28 - 36
  • [26] Real-Time Photometric Calibrated Monocular Direct Visual SLAM
    Liu, Peixin
    Yuan, Xianfeng
    Zhang, Chengjin
    Song, Yong
    Liu, Chuanzheng
    Li, Ziyan
    SENSORS, 2019, 19 (16)
  • [27] REAL-TIME MONOCULAR VISUAL SLAM BY COMBINING POINTS AND LINES
    Wei, Xinyu
    Huang, Jun
    Ma, Xiaoyuan
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 103 - 108
  • [28] Automatic Relocalization and Loop Closing for Real-Time Monocular SLAM
    Williams, Brian
    Klein, Georg
    Reid, Ian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (09) : 1699 - 1712
  • [29] Dense Mapping from Feature-Based Monocular SLAM Based on Depth Prediction
    Duan, Yongli
    Zhang, Jing
    Yang, Lingyu
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [30] DeepRelativeFusion: Dense Monocular SLAM using Single-Image Relative Depth Prediction
    Loo, Shing Yan
    Mashohor, Syamsiah
    Tang, Sai Hong
    Zhang, Hong
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6641 - 6648