Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

被引:0
|
作者
Trotzky, S. [1 ,2 ,3 ]
Chen, Y-A. [1 ,2 ,3 ]
Flesch, A. [4 ,5 ]
McCulloch, I. P. [6 ]
Schollwoeck, U. [1 ,7 ]
Eisert, J. [7 ,8 ,9 ]
Bloch, I. [1 ,2 ,3 ]
机构
[1] Univ Munich, Fak Phys, D-80798 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-54099 Mainz, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] Forschungszentrum Julich, JARA, D-52425 Julich, Germany
[6] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[7] Inst Adv Study, D-14193 Berlin, Germany
[8] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[9] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
MATRIX RENORMALIZATION-GROUP; ATOMIC MOTT INSULATOR; OPTICAL LATTICES; EINSTEIN CONDENSATE; DYNAMICS; PHYSICS;
D O I
10.1038/NPHYS2232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we follow its dynamics in terms of quasi-local densities, currents and coherences-all showing a fast relaxation towards equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms can keep track of.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [41] Onset of ferromagnetism for strongly correlated electrons in one-dimensional chains
    Xavier, Hernan B.
    Kochetov, Evgenii
    Ferraz, Alvaro
    PHYSICAL REVIEW B, 2020, 101 (04)
  • [42] Quantum dynamics of impurities in a one-dimensional Bose gas
    Catani, J.
    Lamporesi, G.
    Naik, D.
    Gring, M.
    Inguscio, M.
    Minardi, F.
    Kantian, A.
    Giamarchi, T.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [43] Correlation lengths of the repulsive one-dimensional Bose gas
    Patu, Ovidiu I.
    Kluemper, Andreas
    PHYSICAL REVIEW A, 2013, 88 (03)
  • [44] Hydrodynamic modes of a one-dimensional trapped Bose gas
    Fuchs, JN
    Leyronas, X
    Combescot, R
    PHYSICAL REVIEW A, 2003, 68 (04):
  • [45] Spatial correlation functions of one-dimensional Bose gases at equilibrium
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [46] Extended conformal symmetry of the one-dimensional Bose gas
    Maule, M
    Sciuto, S
    MODERN PHYSICS LETTERS A, 1997, 12 (29) : 2153 - 2159
  • [47] Correlation functions of the one-dimensional attractive bose gas
    Calabrese, Pasquale
    Caux, Jean-Sebastien
    PHYSICAL REVIEW LETTERS, 2007, 98 (15)
  • [48] THERMODYNAMICS OF A ONE-DIMENSIONAL LATTICE BOSE-GAS
    BOGOLYUBOV, NM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 67 (03) : 614 - 622
  • [49] Statistical properties of one-dimensional attractive Bose gas
    Bienias, P.
    Pawlowski, K.
    Gajda, M.
    Rzazewski, K.
    EPL, 2011, 96 (01)
  • [50] Quantum impurity in a one-dimensional trapped Bose gas
    Dehkharghani, A. S.
    Volosniev, A. G.
    Zinner, N. T.
    PHYSICAL REVIEW A, 2015, 92 (03):