Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

被引:0
|
作者
Trotzky, S. [1 ,2 ,3 ]
Chen, Y-A. [1 ,2 ,3 ]
Flesch, A. [4 ,5 ]
McCulloch, I. P. [6 ]
Schollwoeck, U. [1 ,7 ]
Eisert, J. [7 ,8 ,9 ]
Bloch, I. [1 ,2 ,3 ]
机构
[1] Univ Munich, Fak Phys, D-80798 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-54099 Mainz, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] Forschungszentrum Julich, JARA, D-52425 Julich, Germany
[6] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[7] Inst Adv Study, D-14193 Berlin, Germany
[8] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[9] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
MATRIX RENORMALIZATION-GROUP; ATOMIC MOTT INSULATOR; OPTICAL LATTICES; EINSTEIN CONDENSATE; DYNAMICS; PHYSICS;
D O I
10.1038/NPHYS2232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we follow its dynamics in terms of quasi-local densities, currents and coherences-all showing a fast relaxation towards equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms can keep track of.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [11] Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas
    Barfknecht, R. E.
    Foerster, A.
    Zinner, N. T.
    FEW-BODY SYSTEMS, 2018, 59 (03)
  • [12] Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas
    R. E. Barfknecht
    A. Foerster
    N. T. Zinner
    Few-Body Systems, 2018, 59
  • [13] Dipole mode of a strongly correlated one-dimensional Bose gas in a split trap: Parity effect and barrier renormalization
    Cominotti, Marco
    Hekking, Frank
    Minguzzi, Anna
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [14] Strongly correlated one-dimensional Bose-Fermi quantum mixtures: symmetry and correlations
    Decamp, Jean
    Juenemann, Johannes
    Albert, Mathias
    Rizzi, Matteo
    Minguzzi, Anna
    Vignolo, Patrizia
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [15] Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas
    Tan, Shina
    Pustilnik, Michael
    Glazman, Leonid I.
    PHYSICAL REVIEW LETTERS, 2010, 105 (09)
  • [16] Dynamic polarizability of a one-dimensional harmonically confined strongly interacting Bose gas
    Gattobigio, Mario
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (10) : S191 - S198
  • [17] Probing non-thermal density fluctuations in the one-dimensional Bose gas
    De Nardis, Jacopo
    Panfil, Milosz
    Gambassi, Andrea
    Cugliandolo, Leticia F.
    Konik, Robert
    Foini, Laura
    SCIPOST PHYSICS, 2017, 3 (03):
  • [18] Diminished quantum depletion and correlated droplets in one-dimensional dipolar Bose gas
    Tuzemen, Bugra
    Marciniak, Maciej
    Pawlowski, Krzysztof
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [19] Cooling of a One-Dimensional Bose Gas
    Rauer, B.
    Grisins, P.
    Mazets, I. E.
    Schweigler, T.
    Rohringer, W.
    Geiger, R.
    Langen, T.
    Schmiedmayer, J.
    PHYSICAL REVIEW LETTERS, 2016, 116 (03)
  • [20] Correlations in a one-dimensional Bose gas
    Demirel, E
    Tanatar, B
    PHYSICAL REVIEW B, 1999, 59 (14): : 9271 - 9277