Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

被引:0
|
作者
Trotzky, S. [1 ,2 ,3 ]
Chen, Y-A. [1 ,2 ,3 ]
Flesch, A. [4 ,5 ]
McCulloch, I. P. [6 ]
Schollwoeck, U. [1 ,7 ]
Eisert, J. [7 ,8 ,9 ]
Bloch, I. [1 ,2 ,3 ]
机构
[1] Univ Munich, Fak Phys, D-80798 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-54099 Mainz, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] Forschungszentrum Julich, JARA, D-52425 Julich, Germany
[6] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[7] Inst Adv Study, D-14193 Berlin, Germany
[8] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[9] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
MATRIX RENORMALIZATION-GROUP; ATOMIC MOTT INSULATOR; OPTICAL LATTICES; EINSTEIN CONDENSATE; DYNAMICS; PHYSICS;
D O I
10.1038/NPHYS2232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we follow its dynamics in terms of quasi-local densities, currents and coherences-all showing a fast relaxation towards equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms can keep track of.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [31] Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
    W. Rohringer
    D. Fischer
    F. Steiner
    I. E. Mazets
    J. Schmiedmayer
    M. Trupke
    Scientific Reports, 5
  • [32] CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL BOSE-GAS IN THERMODYNAMIC-EQUILIBRIUM
    BOGOLYUBOV, NM
    KOREPIN, VE
    THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 60 (02) : 808 - 814
  • [33] Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
    Rohringer, W.
    Fischer, D.
    Steiner, F.
    Mazets, I. E.
    Schmiedmayer, J.
    Trupke, M.
    SCIENTIFIC REPORTS, 2015, 5
  • [34] Unconventional Universality Class of One-Dimensional Isolated Coarsening Dynamics in a Spinor Bose Gas
    Fujimoto, Kazuya
    Hamazaki, Ryusuke
    Ueda, Masahito
    PHYSICAL REVIEW LETTERS, 2018, 120 (07)
  • [35] ORDERING FROM FRUSTRATION IN A STRONGLY CORRELATED ONE-DIMENSIONAL SYSTEM
    Lal, Siddhartha
    Laad, Mukul S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (18): : 3485 - 3506
  • [36] PERSISTENT CURRENT IN ONE-DIMENSIONAL SYSTEMS OF STRONGLY CORRELATED ELECTRONS
    ZVYAGIN, AA
    KRIVE, IV
    FIZIKA NIZKIKH TEMPERATUR, 1995, 21 (07): : 687 - 716
  • [37] A strongly correlated electron state at one-dimensional quantum points
    Ya. V. Gindikin
    V. A. Sablikov
    Journal of Communications Technology and Electronics, 2007, 52 : 684 - 692
  • [38] A strongly correlated electron state at one-dimensional quantum points
    Gindikin, Ya. V.
    Sablikov, V. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2007, 52 (06) : 684 - 692
  • [39] Charge and spin transport in strongly correlated one-dimensional quantum systems driven far from equilibrium
    Benenti, Giuliano
    Casati, Giulio
    Prosen, Tomaz
    Rossini, Davide
    Znidaric, Marko
    PHYSICAL REVIEW B, 2009, 80 (03)
  • [40] Dipolar oscillations of strongly correlated bosons on one-dimensional lattices
    Rigol, M.
    Rousseau, V.
    Scalettar, R. T.
    Singh, R. R. P.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 45 - +