Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

被引:0
|
作者
Trotzky, S. [1 ,2 ,3 ]
Chen, Y-A. [1 ,2 ,3 ]
Flesch, A. [4 ,5 ]
McCulloch, I. P. [6 ]
Schollwoeck, U. [1 ,7 ]
Eisert, J. [7 ,8 ,9 ]
Bloch, I. [1 ,2 ,3 ]
机构
[1] Univ Munich, Fak Phys, D-80798 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-54099 Mainz, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] Forschungszentrum Julich, JARA, D-52425 Julich, Germany
[6] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[7] Inst Adv Study, D-14193 Berlin, Germany
[8] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[9] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
MATRIX RENORMALIZATION-GROUP; ATOMIC MOTT INSULATOR; OPTICAL LATTICES; EINSTEIN CONDENSATE; DYNAMICS; PHYSICS;
D O I
10.1038/NPHYS2232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we follow its dynamics in terms of quasi-local densities, currents and coherences-all showing a fast relaxation towards equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms can keep track of.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [21] PROPERTIES OF ONE-DIMENSIONAL STRONGLY CORRELATED ELECTRONS
    SHIBA, H
    OGATA, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (108): : 265 - 286
  • [22] Ion-induced density bubble in a strongly correlated one-dimensional gas
    Goold, J.
    Doerk, H.
    Idziaszek, Z.
    Calarco, T.
    Busch, Th.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [23] Fermionization dynamics of a strongly interacting one-dimensional Bose gas after an interaction quench
    Muth, Dominik
    Schmidt, Bernd
    Fleischhauer, Michael
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [24] Interaction quenches in the one-dimensional Bose gas
    Kormos, Marton
    Shashi, Aditya
    Chou, Yang-Zhi
    Caux, Jean-Sebastien
    Imambekov, Adilet
    PHYSICAL REVIEW B, 2013, 88 (20):
  • [25] Impurity states in the one-dimensional Bose gas
    Pastukhov, Volodymyr
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [26] Spectral function of one-dimensional strongly correlated electrons
    Penc, K
    Mila, F
    Shiba, H
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 : S85 - S91
  • [27] One-dimensional Bose gas on an atom chip
    van Amerongen, A. H.
    ANNALES DE PHYSIQUE, 2008, 33 (03) : 1 - +
  • [28] NUMERICAL STUDY OF ONE-DIMENSIONAL STRONGLY CORRELATED SYSTEMS
    KUMARI, K
    SINGH, I
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1995, 190 (02): : 455 - 469
  • [29] Statistical properties of one-dimensional Bose gas
    Bienias, Przemyslaw
    Pawlowski, Krzysztof
    Gajda, Mariusz
    Rzazewski, Kazimierz
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [30] Quantum stirring in a one-dimensional Bose gas
    Citro, Roberta
    Minguzzi, Anna
    Hekking, Frank W. J.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 3: QUANTUM GASES LIQUIDS AND SOLIDS, 2009, 150