Recursive Projection-Aggregation Decoding of Reed-Muller Codes

被引:33
|
作者
Ye, Min [1 ]
Abbe, Emmanuel [2 ,3 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Data Sci & Informat Technol Res Ctr, Shenzhen 518055, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, Math Inst, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Elect Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
Decoding; Iterative decoding; AWGN channels; Simulation; Error correction codes; Memoryless systems; Frequency modulation; Reed-Muller codes; polar codes; RPA decoding; binary symmetric channels; POLAR; PERFORMANCE; DECODERS; CAPACITY;
D O I
10.1109/TIT.2020.2977917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM codes), and aggregating the reconstructions (e.g., using majority votes). We further provide extensions of the algorithms using list-decoding. We run our algorithm for AWGN channels and Binary Symmetric Channels at the short code length (<= 1024) regime for a wide range of code rates. Simulation results show that in both low code rate and high code rate regimes, the new algorithm outperforms the widely used decoder for polar codes (SCL+CRC) with the same parameters. The performance of the new algorithm for RM codes in those regimes is in fact close to that of the maximal likelihood decoder. Finally, the new decoder naturally allows for parallel implementations.
引用
收藏
页码:4948 / 4965
页数:18
相关论文
共 50 条
  • [21] Sequential decoding of binary Reed-Muller codes
    Stolte, Norbert
    Sorger, Ulrich
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54 (06): : 412 - 420
  • [22] On a decoding algorithm of mΘ Reed-Muller codes
    Armand, Tsimi Jean
    Cedric, Pemha Binyam Gabriel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 341 - 358
  • [23] On polylogarithmic decoding complexity for Reed-Muller codes
    Dumer, I
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 326 - 326
  • [24] DECODING REED-MULLER CODES BY MULTILAYER PERCEPTRONS
    TSENG, YH
    WU, JL
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1993, 75 (04) : 589 - 594
  • [25] Sequential decoding of binary Reed-Muller codes
    Stolte, N
    Sorger, U
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2000, 54 (06) : 412 - 420
  • [26] Error exponents for recursive decoding of Reed-Muller codes on a binary-symmetric channel
    Burnashev, Marat
    Dumer, Ilya
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4880 - 4891
  • [27] Recursive Decoding of Reed-Muller Codes Starting With the Higher-Rate Constituent Code
    Kamenev, Mikhail
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2206 - 2217
  • [28] Recursive error correction for general Reed-Muller codes
    Dumer, I
    Shabunov, K
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (02) : 253 - 269
  • [29] A New Permutation Decoding Method for Reed-Muller Codes
    Kamenev, Mikhail
    Kameneva, Yulia
    Kurmaev, Oleg
    Maevskiy, Alexey
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 26 - 30
  • [30] Decoding Reed-Muller Codes Over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50