Recursive Projection-Aggregation Decoding of Reed-Muller Codes

被引:33
|
作者
Ye, Min [1 ]
Abbe, Emmanuel [2 ,3 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Data Sci & Informat Technol Res Ctr, Shenzhen 518055, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, Math Inst, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Elect Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
Decoding; Iterative decoding; AWGN channels; Simulation; Error correction codes; Memoryless systems; Frequency modulation; Reed-Muller codes; polar codes; RPA decoding; binary symmetric channels; POLAR; PERFORMANCE; DECODERS; CAPACITY;
D O I
10.1109/TIT.2020.2977917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM codes), and aggregating the reconstructions (e.g., using majority votes). We further provide extensions of the algorithms using list-decoding. We run our algorithm for AWGN channels and Binary Symmetric Channels at the short code length (<= 1024) regime for a wide range of code rates. Simulation results show that in both low code rate and high code rate regimes, the new algorithm outperforms the widely used decoder for polar codes (SCL+CRC) with the same parameters. The performance of the new algorithm for RM codes in those regimes is in fact close to that of the maximal likelihood decoder. Finally, the new decoder naturally allows for parallel implementations.
引用
收藏
页码:4948 / 4965
页数:18
相关论文
共 50 条
  • [31] Decoding Reed-Muller Codes over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    THEORY OF COMPUTING, 2017, 13
  • [32] Improved partial permutation decoding for Reed-Muller codes
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2017, 340 (04) : 722 - 728
  • [33] FAST CORRELATION DECODING OF REED-MULLER CODES.
    Karyakin, Yu.D.
    Problems of information transmission, 1987, 23 (02) : 121 - 129
  • [34] Distance Threshold Viterbi Decoding of Reed-Muller codes
    Magdy, Ahmed
    Mahran, Ashraf
    Abdel-Hamid, Gamal M.
    2019 15TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO 2019), 2019, : 12 - 16
  • [35] Decoding reed-muller codes over product sets
    Kim J.Y.
    Kopparty S.
    Theory of Computing, 2017, 13 : 1 - 38
  • [37] Decoding Reed-Muller Codes With Successive Codeword Permutations
    Doan, Nghia
    Hashemi, Seyyed Ali
    Mondelli, Marco
    Gross, Warren J. J.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (11) : 7134 - 7145
  • [38] Efficient decoding algorithms for generalized Reed-Muller codes
    Paterson, KG
    Jones, AE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2000, 48 (08) : 1272 - 1285
  • [39] Reed-Muller Codes
    Abbe, Emmanuel
    Sberlo, Ori
    Shpilka, Amir
    Ye, Min
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2023, 20 (1-2): : 1 - 156
  • [40] ON THE REED-MULLER CODES
    ASSMUS, EF
    DISCRETE MATHEMATICS, 1992, 106 : 25 - 33