Recursive Projection-Aggregation Decoding of Reed-Muller Codes

被引:33
|
作者
Ye, Min [1 ]
Abbe, Emmanuel [2 ,3 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Data Sci & Informat Technol Res Ctr, Shenzhen 518055, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, Math Inst, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Elect Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
Decoding; Iterative decoding; AWGN channels; Simulation; Error correction codes; Memoryless systems; Frequency modulation; Reed-Muller codes; polar codes; RPA decoding; binary symmetric channels; POLAR; PERFORMANCE; DECODERS; CAPACITY;
D O I
10.1109/TIT.2020.2977917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM codes), and aggregating the reconstructions (e.g., using majority votes). We further provide extensions of the algorithms using list-decoding. We run our algorithm for AWGN channels and Binary Symmetric Channels at the short code length (<= 1024) regime for a wide range of code rates. Simulation results show that in both low code rate and high code rate regimes, the new algorithm outperforms the widely used decoder for polar codes (SCL+CRC) with the same parameters. The performance of the new algorithm for RM codes in those regimes is in fact close to that of the maximal likelihood decoder. Finally, the new decoder naturally allows for parallel implementations.
引用
收藏
页码:4948 / 4965
页数:18
相关论文
共 50 条
  • [41] Simplified Decoding of Polar Codes by Identifying Reed-Muller Constituent Codes
    Ghaddar, Nadim
    Saber, Hamid
    Lin, Hsien-Ping
    Bae, Jung Hyun
    Lee, Jungwon
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [42] Efficiently Decoding Reed-Muller Codes from Random Errors
    Saptharishi, Ramprasad
    Shpilka, Amir
    Volk, Ben Lee
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 227 - 235
  • [43] Decoding Reed-Muller codes beyond half the minimum distance
    Heydtmann, AE
    Jakobsen, T
    FINITE FIELDS AND APPLICATIONS, 2001, : 232 - 250
  • [44] On Decoding of Reed-Muller Codes Using a Local Graph Search
    Kamenev, Mikhail
    2020 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [45] On Decoding of Reed-Muller Codes Using a Local Graph Search
    Kamenev, Mikhail
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 739 - 748
  • [46] MAXIMUM-LIKELIHOOD DECODING OF CERTAIN REED-MULLER CODES
    SEROUSSI, G
    LEMPEL, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (03) : 448 - 450
  • [47] Sequential Decoding of High-Rate Reed-Muller Codes
    Kamenev, Mikhail
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1076 - 1081
  • [48] Efficient erasure list-decoding of Reed-Muller codes
    Gaborit, Philippe
    Ruatta, Olivier
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 148 - +
  • [49] Iterative Reed-Muller Decoding
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    2021-11TH INTERNATIONAL SYMPOSIUM ON TOPICS IN CODING (ISTC'21), 2021,
  • [50] Efficiently Decoding Reed-Muller Codes From Random Errors
    Saptharishi, Ramprasad
    Shpilka, Amir
    Volk, Ben Lee
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 1954 - 1960