Recursive Decoding of Reed-Muller Codes Starting With the Higher-Rate Constituent Code

被引:0
|
作者
Kamenev, Mikhail [1 ]
机构
[1] Huawei Technol Co Ltd, Moscow Res Ctr, Moscow 121614, Russia
关键词
Reed-Muller codes; AWGN channels; near maximum-likelihood decoding; permutation decoding; Plotkin construction; PROJECTION-AGGREGATION;
D O I
10.1109/TIT.2022.3192896
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recursive list decoding of Reed-Muller (RM) codes, with moderate list size, is known to approach maximumlikelihood (ML) performance of short length (<= 256) RM codes. Recursive decoding employs the Plotkin construction to split the original code into two shorter RM codes with different rates. In contrast to the standard approach which decodes the lower-rate code first, the method in this paper decodes the higher-rate code first. This modification enables an efficient permutation-based decoding technique, with permutations being selected on the fly from the automorphism group of the code using soft information from a channel. Simulation results show that the error-rate performance of the proposed algorithms, enhanced by a permutation selection technique, is close to that of the automorphism-based recursive decoding algorithm with similar complexity for short RM codes, while our decoders perform better for longer RM codes. In particular, it is demonstrated that the proposed algorithms achieve near-ML performance for short RM codes and for RM codes of length 2(m) and order m - 3 with reasonable complexity.
引用
收藏
页码:2206 / 2217
页数:12
相关论文
共 50 条
  • [1] Recursive decoding of Reed-Muller codes
    Dumer, I
    Shabunov, K
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 63 - 63
  • [2] Recursive and permutation decoding for Reed-Muller codes
    Dumer, I
    Shabunov, K
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 146 - 146
  • [3] Error exponents for recursive decoding of Reed-Muller codes
    Burnashev, Marat
    Dumer, Ilya
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 704 - +
  • [4] On recursive decoding with sublinear complexity for Reed-Muller codes
    Dumer, I
    2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 14 - 17
  • [5] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298
  • [6] Simplified Decoding of Polar Codes by Identifying Reed-Muller Constituent Codes
    Ghaddar, Nadim
    Saber, Hamid
    Lin, Hsien-Ping
    Bae, Jung Hyun
    Lee, Jungwon
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [7] Recursive decoding and its performance for low-rate Reed-Muller codes
    Dumer, I
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (05) : 811 - 823
  • [8] Recursive Projection-Aggregation Decoding of Reed-Muller Codes
    Ye, Min
    Abbe, Emmanuel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) : 4948 - 4965
  • [9] Recursive projection-aggregation decoding of Reed-Muller codes
    Ye, Min
    Abbe, Emmanuel
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2064 - 2068
  • [10] Decoding Reed-Muller Codes Using Redundant Code Constraints
    Lian, Mengke
    Hager, Christian
    Pfister, Henry D.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 42 - 47