Error exponents for recursive decoding of Reed-Muller codes

被引:0
|
作者
Burnashev, Marat [1 ]
Dumer, Ilya [2 ]
机构
[1] Inst Informat Transmiss Problems, Moscow, Russia
[2] Univ Calif Riverside, Riverside, CA USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ISIT.2006.261623
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Recursive decoding is studied for Reed-Muller (RM) codes used on a binary symmetric channel. Decoding is performed beyond the bounded distance radius d/2 and corrects most error patterns of weight up to (d ln d)/2. In our analysis, decoding is decomposed into consecutive steps, with one information bit derived in each step. Then the error probability of each step is defined by the recursive recalculations of the Bernoulli random variables. We derive the exponential moments of the recalculated random variables. As a result, tight exponential bounds on the output error probability are obtained for the two recursive algorithms considered in the paper. For both algorithms, the derived error exponents almost coincide with simulation results.
引用
收藏
页码:704 / +
页数:2
相关论文
共 50 条
  • [1] Error exponents for recursive decoding of Reed-Muller codes on a binary-symmetric channel
    Burnashev, Marat
    Dumer, Ilya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4880 - 4891
  • [2] Recursive decoding of Reed-Muller codes
    Dumer, I
    Shabunov, K
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 63 - 63
  • [3] Recursive and permutation decoding for Reed-Muller codes
    Dumer, I
    Shabunov, K
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 146 - 146
  • [4] On recursive decoding with sublinear complexity for Reed-Muller codes
    Dumer, I
    [J]. 2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 14 - 17
  • [5] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    [J]. INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298
  • [6] Error Exponents for Two Soft-Decision Decoding Algorithms of Reed-Muller Codes
    Burnashev, Marat V.
    Dumer, Ilya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (09) : 4108 - 4118
  • [7] Recursive error correction for general Reed-Muller codes
    Dumer, I
    Shabunov, K
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (02) : 253 - 269
  • [8] Recursive Projection-Aggregation Decoding of Reed-Muller Codes
    Ye, Min
    Abbe, Emmanuel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) : 4948 - 4965
  • [9] Recursive projection-aggregation decoding of Reed-Muller codes
    Ye, Min
    Abbe, Emmanuel
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2064 - 2068
  • [10] Soft-decision decoding of Reed-Muller codes: Recursive lists
    Dumer, I
    Shabunov, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) : 1260 - 1266