Decoding Reed-Muller Codes Using Redundant Code Constraints

被引:0
|
作者
Lian, Mengke [1 ]
Hager, Christian [2 ]
Pfister, Henry D. [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
基金
美国国家科学基金会;
关键词
BLOCK-CODES; DECISION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller (RM) codes was recently introduced by Ye and Abbe. We show that the RPA algorithm is closely related to (weighted) belief-propagation (BP) decoding by interpreting it as a message-passing algorithm on a factor graph with redundant code constraints. We use this observation to introduce a novel decoder tailored to high-rate RM codes. The new algorithm relies on puncturing rather than projections and is called recursive puncturing-aggregation (RXA). We also investigate collapsed (i.e., non-recursive) versions of RPA and RXA and show some examples where they achieve similar performance with lower decoding complexity.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [1] Recursive decoding of Reed-Muller codes
    Dumer, I
    Shabunov, K
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 63 - 63
  • [2] Reed-Muller codes and permutation decoding
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3114 - 3119
  • [3] A hybrid decoding of Reed-Muller codes
    Li, Shuang
    Zhang, Shicheng
    Chen, Zhenxing
    Kang, Seog Geun
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (02):
  • [4] Adaptive Viterbi Decoding of Reed-Muller Codes
    Mahran, Ashraf M.
    Magdy, Ahmed
    Elghandour, Ahmed
    2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 314 - 319
  • [5] Automorphism Ensemble Decoding of Reed-Muller Codes
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6424 - 6438
  • [6] NEW DECODING ALGORITHM FOR REED-MULLER CODES
    TOKIWA, K
    SUGIMURA, T
    KASAHARA, M
    NAMEKAWA, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) : 779 - 787
  • [7] Sequential decoding of binary Reed-Muller codes
    Stolte, Norbert
    Sorger, Ulrich
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54 (06): : 412 - 420
  • [8] Recursive and permutation decoding for Reed-Muller codes
    Dumer, I
    Shabunov, K
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 146 - 146
  • [9] On a decoding algorithm of mΘ Reed-Muller codes
    Armand, Tsimi Jean
    Cedric, Pemha Binyam Gabriel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 341 - 358
  • [10] On polylogarithmic decoding complexity for Reed-Muller codes
    Dumer, I
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 326 - 326