A POSTERIORI ERROR ESTIMATION FOR ADAPTIVE IGA BOUNDARY ELEMENT METHODS

被引:0
|
作者
Feischl, Michael [1 ]
Gantner, Gregor [1 ]
Praetorius, Dirk [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
关键词
Isogeometric analysis; boundary element method; a posteriori error estimation; adaptive mesh-refinement; NURBS; ARONSZAJN-SLOBODECKIJ NORM; LOCALIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimation and adaptive mesh-refinement are well-established and important tools for standard boundary element methods (BEM) for polygonal boundaries and piecewise polynomial ansatz functions (see e.g. the seminal work [1] for the derivation of the weighted-residual error estimator and [5] for convergence even with optimal rates). In contrast, the mathematically reliable a posteriori error analysis for isogeometric BEM (IGABEM) has not been considered, yet. In our talk, we aim to shed some light on this gap and to transfer known results on reliable a posteriori error estimators [1, 3] from standard BEM to IGABEM.
引用
收藏
页码:2421 / 2432
页数:12
相关论文
共 50 条
  • [41] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [42] Remarks on a posteriori error estimation for finite element solutions
    Kikuchi, Fumio
    Saito, Hironobu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) : 329 - 336
  • [43] A posteriori error estimation for standard finite element analysis
    Diez, P
    Egozcue, JJ
    Huerta, A
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) : 141 - 157
  • [44] A posteriori error estimation for nonlinear parabolic boundary control
    Kammann, Eileen
    Troeltzsch, Fredi
    [J]. 2011 16TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, 2011, : 80 - 83
  • [45] Error estimation and adaptive mesh refinement in boundary element method, an overview
    Kita, E
    Kamiya, N
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (07) : 479 - 495
  • [46] EFFICIENT ERROR ESTIMATION AND ADAPTIVE MESHING METHOD FOR BOUNDARY ELEMENT ANALYSIS
    YUUKI, R
    CAO, GQ
    TAMAKI, M
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 1992, 15 (3-4) : 279 - 287
  • [47] Recovery Type a Posteriori Error Estimation of an Adaptive Finite Element Method for Cahn–Hilliard Equation
    Yaoyao Chen
    Yunqing Huang
    Nianyu Yi
    Peimeng Yin
    [J]. Journal of Scientific Computing, 2024, 98
  • [48] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [49] A posteriori error estimates of finite element methods by preconditioning
    Li, Yuwen
    Zikatanov, Ludmil
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 192 - 201
  • [50] A posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
    Lu Z.
    [J]. Numerical Analysis and Applications, 2011, 4 (3) : 210 - 222