Recovery Type a Posteriori Error Estimation of an Adaptive Finite Element Method for Cahn–Hilliard Equation

被引:0
|
作者
Yaoyao Chen
Yunqing Huang
Nianyu Yi
Peimeng Yin
机构
[1] Anhui Normal University,School of Mathematics and Statistics
[2] Xiangtan University,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, School of Mathematics and Computational Science
[3] Xiangtan University,Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science
[4] The University of Texas at El Paso,Department of Mathematical Sciences
来源
关键词
Cahn–Hilliard equation; A posteriori error estimation; Recovery type; Time-space adaptive algorithm; 65N15; 65N30; 65N50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive a novel recovery type a posteriori error estimation of the Crank–Nicolson finite element method for the Cahn–Hilliard equation. To achieve this, we employ both the elliptic reconstruction technique and a time reconstruction technique based on three time-level approximations, resulting in an optimal a posteriori error estimator. We propose a time-space adaptive algorithm that utilizes the derived a posteriori error estimator as error indicators. Numerical experiments are presented to validate the theoretical findings, including comparing with an adaptive finite element method based on a residual type a posteriori error estimator.
引用
收藏
相关论文
共 50 条
  • [1] Recovery Type a Posteriori Error Estimation of an Adaptive Finite Element Method for Cahn-Hilliard Equation
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    Yin, Peimeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
  • [2] Recovery type a posteriori error estimation of adaptive finite element method for Allen-Cahn equation
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [3] An adaptive finite element method based on Superconvergent Cluster Recovery for the Cahn-Hilliard equation
    Tian, Wenyan
    Chen, Yaoyao
    Meng, Zhaoxia
    Jia, Hongen
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1323 - 1343
  • [4] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Xiaobing Feng
    Andreas Prohl
    [J]. Numerische Mathematik, 2004, 99 : 47 - 84
  • [5] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Feng, XB
    Prohl, A
    [J]. NUMERISCHE MATHEMATIK, 2004, 99 (01) : 47 - 84
  • [6] A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow
    Xiaobing Feng
    Hai-jun Wu
    [J]. Journal of Scientific Computing, 2005, 24 : 121 - 146
  • [7] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    YanHong Bai
    YongKe Wu
    XiaoPing Xie
    [J]. Science China Mathematics, 2016, 59 : 1835 - 1850
  • [8] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    BAI YanHong
    WU YongKe
    XIE XiaoPing
    [J]. Science China Mathematics, 2016, 59 (09) : 1835 - 1850
  • [9] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    Bai YanHong
    Wu YongKe
    Xie XiaoPing
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1835 - 1850
  • [10] A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow
    Feng, XB
    Wu, HJ
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (02) : 121 - 146