A posteriori error estimates of finite element methods by preconditioning

被引:4
|
作者
Li, Yuwen [1 ]
Zikatanov, Ludmil [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
关键词
PART I; CONVERGENCE; RECOVERY; GRIDS;
D O I
10.1016/j.camwa.2020.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a framework that relates preconditioning with a posteriori error estimates in finite element methods. In particular, we use standard tools in subspace correction methods to obtain reliable and efficient error estimators. As a simple example, we recover the classical residual error estimators for the second order elliptic equations. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:192 / 201
页数:10
相关论文
共 50 条