A posteriori error estimates of the weak Galerkin finite element methods for parabolic problems

被引:0
|
作者
Dai, Jiajia [1 ]
Chen, Luoping [1 ]
Yang, Miao [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear parabolic differential equations; Backward Euler weak Galerkin method; A posteriori error estimates; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.1016/j.cam.2024.115822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, We propose the residual-based a posteriori error estimator of the weak Galerkin finite element method with the backward Euler time discretization for the linear parabolic partial differential equation. For the a posteriori error estimator, we introduce the Helmholtz decomposition technique to prove its reliability. We mainly study WG element (P-j(K),P-l(partial derivative K),V(K,r) = RTj(K)). Numerical experiments based on the lowest order case, i.e. (P-0(K),P-0(partial derivative K),RT0(K)), are provided to verify the theoretical research.
引用
收藏
页数:14
相关论文
共 50 条