A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

被引:0
|
作者
Long Chen
Junping Wang
Xiu Ye
机构
[1] University of California at Irvine,Department of Mathematics
[2] National Science Foundation,Division of Mathematical Sciences
[3] University of Arkansas at Little Rock,Department of Mathematics
来源
关键词
Weak Galerkin; Finite element methods; Discrete weak gradient; Second-order elliptic problems; A posterior error estimate; Primary: 65N15, 65N30; Secondary: 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
A residual type a posteriori error estimator is presented and analyzed for Weak Galerkin finite element methods for second order elliptic problems. The error estimator is proved to be efficient and reliable through two estimates, one from below and the other from above, in terms of an H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-equivalent norm for the exact error. Two numerical experiments are conducted to demonstrate the effectiveness of adaptive mesh refinement guided by this estimator.
引用
收藏
页码:496 / 511
页数:15
相关论文
共 50 条