Weak Galerkin;
Finite element methods;
Discrete weak gradient;
Second-order elliptic problems;
A posterior error estimate;
Primary: 65N15, 65N30;
Secondary: 35J50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A residual type a posteriori error estimator is presented and analyzed for Weak Galerkin finite element methods for second order elliptic problems. The error estimator is proved to be efficient and reliable through two estimates, one from below and the other from above, in terms of an H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^1$$\end{document}-equivalent norm for the exact error. Two numerical experiments are conducted to demonstrate the effectiveness of adaptive mesh refinement guided by this estimator.
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Li, Dan
Wang, Chunmei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Dept Math, Gainesville, FL 32611 USANanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Wang, Chunmei
Wang, Junping
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sci Fdn, Div Math Sci, Alexandria, VA 22314 USANanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Wang, Junping
Ye, Xiu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas Little Rock, Dept Math, Little Rock, AR 72204 USANanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China