Weak Galerkin;
Finite element methods;
Discrete weak gradient;
Second-order elliptic problems;
A posterior error estimate;
Primary: 65N15, 65N30;
Secondary: 35J50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A residual type a posteriori error estimator is presented and analyzed for Weak Galerkin finite element methods for second order elliptic problems. The error estimator is proved to be efficient and reliable through two estimates, one from below and the other from above, in terms of an H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^1$$\end{document}-equivalent norm for the exact error. Two numerical experiments are conducted to demonstrate the effectiveness of adaptive mesh refinement guided by this estimator.
机构:
Northwestern Polytech Univ, Res Ctr Computat Sci, Sch Math & Stat, Xi'an 710129, Shaanxi, Peoples R ChinaNorthwestern Polytech Univ, Res Ctr Computat Sci, Sch Math & Stat, Xi'an 710129, Shaanxi, Peoples R China
Liu, Ying
Wang, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Polytech Univ, Res Ctr Computat Sci, Sch Math & Stat, Xi'an 710129, Shaanxi, Peoples R ChinaNorthwestern Polytech Univ, Res Ctr Computat Sci, Sch Math & Stat, Xi'an 710129, Shaanxi, Peoples R China
Wang, Gang
Wu, Mengyao
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Polytech Univ, Res Ctr Computat Sci, Sch Math & Stat, Xi'an 710129, Shaanxi, Peoples R ChinaNorthwestern Polytech Univ, Res Ctr Computat Sci, Sch Math & Stat, Xi'an 710129, Shaanxi, Peoples R China