A posteriori error estimation for standard finite element analysis

被引:38
|
作者
Diez, P [1 ]
Egozcue, JJ [1 ]
Huerta, A [1 ]
机构
[1] Univ Politecn Catalunya, ETS Ingn Caminos, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
关键词
D O I
10.1016/S0045-7825(98)00009-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new residual type estimator based on projections of the error on subspaces of locally-supported functions is presented. The estimator is defined by a standard element-by-element refinement. First, an approximation of the energy norm of the error is obtained solving local problems with homogeneous Dirichlet boundary conditions. A later enrichment of the estimation is performed by adding the contributions of projections on a new family of subspaces. This estimate is a lower bound of the measure of the actual error. The estimator does not need to approximate local boundary conditions for the error equation. Therefore, computation of flux jumps is not necessary. Moreover, the estimator can be applied in mixed meshes containing elements of different shapes and its implementation in a standard finite element code is straightforward. The presented results show the effectiveness of the estimator approximating both the distribution and the global measure of the error, as well as its usefulness in adaptive procedures. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:141 / 157
页数:17
相关论文
共 50 条
  • [1] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [2] A posteriori error estimation techniques in practical finite element analysis
    Grätsch, T
    Bathe, KJ
    COMPUTERS & STRUCTURES, 2005, 83 (4-5) : 235 - 265
  • [3] A posteriori error estimation in constitutive law for acoustic finite element analysis
    Bouillard, P
    Warzee, G
    ADVANCES IN FINITE ELEMENT TECHNOLOGY, 1996, : 55 - 60
  • [4] A posteriori error estimation for generalized finite element methods
    Strouboulis, T
    Zhang, L
    Wang, D
    Babuska, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (9-12) : 852 - 879
  • [5] Remarks on a posteriori error estimation for finite element solutions
    Kikuchi, Fumio
    Saito, Hironobu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) : 329 - 336
  • [6] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [7] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [8] A POSTERIORI ERROR ESTIMATION FOR THE FINITE-ELEMENT AND BOUNDARY ELEMENT METHODS
    RENCIS, JJ
    UREKEW, TJ
    JONG, KY
    KIRK, R
    FEDERICO, P
    COMPUTERS & STRUCTURES, 1990, 37 (01) : 103 - 117
  • [9] Robust a posteriori error estimation for nonconforming finite element approximation
    Ainsworth, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2320 - 2341
  • [10] A POSTERIORI ERROR ESTIMATION FOR THE STOCHASTIC COLLOCATION FINITE ELEMENT METHOD
    Guignard, Diane
    Nobile, Fabio
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 3121 - 3143