Fueter's Theorem for Monogenic Functions in Biaxial Symmetric Domains

被引:6
|
作者
Pena, Dixan Pena [1 ]
Sabadini, Irene [1 ]
Sommen, Franciscus [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Clifford monogenic functions; Fueter's theorem; Fischer decomposition; FORM;
D O I
10.1007/s00025-017-0732-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fueter's theorem discloses a remarkable connection existing between holomorphic functions and monogenic functions in when m is odd. It states that is monogenic if is holomorphic and is a homogeneous monogenic polynomial in . Eelbode et al. (AIP Conf Proc 1479:340-343, 2012) proved that this statement is still valid if the monogenicity condition on is dropped. To obtain this result, the authors used representation theory methods but their result also follows from a direct calculus we established in our paper Pea Pea and Sommen (J Math Anal Appl 365:29-35, 2010). In this paper we generalize the result from Eelbode et al. (2012) to the case of monogenic functions in biaxially symmetric domains. In order to achieve this goal we first generalize Pea Pea and Sommen (2010) to the biaxial case and then derive the main result from that.
引用
收藏
页码:1747 / 1758
页数:12
相关论文
共 50 条
  • [21] Uniform generalizations of Fueter's theorem
    Dong, Baohua
    Qian, Tao
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (01) : 229 - 251
  • [22] Fueter's theorem: The saga continues
    Pena, Dixan Pena
    Sommen, Frank
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 29 - 35
  • [23] Uniform generalizations of Fueter’s theorem
    Baohua Dong
    Tao Qian
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 229 - 251
  • [24] Higher spin generalisation of Fueter's theorem
    Eelbode, David
    Janssens, Tim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 4887 - 4905
  • [25] A generalization of monogenic functions to fine domains
    Lavicka, Roman
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (3-4) : 865 - 874
  • [26] A Generalization of Monogenic Functions to Fine Domains
    Roman Lávička
    Advances in Applied Clifford Algebras, 2008, 18 : 865 - 874
  • [27] GENERALIZATION OF A THEOREM OF MENSHOV ON MONOGENIC FUNCTIONS
    TELYAKOVSKII, DS
    MATHEMATICS OF THE USSR-IZVESTIYA, 1989, 53 (04): : 221 - 231
  • [28] Harmonic and Monogenic Functions on Toroidal Domains
    Ashtab, Z.
    Morais, J.
    Porter, R. Michael
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [29] Fueter's theorem in discrete Clifford analysis
    De Ridder, Hilde
    Sommen, Frank
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (07) : 1908 - 1920
  • [30] On the global operator and Fueter mapping theorem for slice polyanalytic functions
    Alpay, Daniel
    Diki, Kamal
    Sabadini, Irene
    ANALYSIS AND APPLICATIONS, 2021, 19 (06) : 941 - 964