Fueter's theorem in discrete Clifford analysis

被引:0
|
作者
De Ridder, Hilde [1 ]
Sommen, Frank [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Bldg S22,Galglaan 2, B-9000 Ghent, Belgium
基金
比利时弗兰德研究基金会;
关键词
discrete Clifford analysis; axial monogenicity; Fueter theorem;
D O I
10.1002/mma.3612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discretize techniques for the construction of axially monogenic functions to the setting of discrete Clifford analysis. Wherefore, we work in the discrete Hermitian Clifford setting, where each basis vector e(j) is split into a forward and backward basis vector: ej=ej++ej-. We prove a discrete version of Fueter's theorem in odd dimension by showing that for a discrete monogenic function f((0),(1)) left-monogenic in two variables (0) and (1) and for a left-monogenic P-k(), the m-dimensional function k+m-12f(01)Pk() is in itself left monogenic, that is, a discrete function in the kernel of the discrete Dirac operator. Closely related, we consider a Vekua-type system for the construction of axially monogenic functions. We consider some explicit examples: the discrete axial-exponential functions and the discrete Clifford-Hermite polynomials. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1908 / 1920
页数:13
相关论文
共 50 条
  • [1] Fueter polynomials in discrete Clifford analysis
    De Ridder, H.
    De Schepper, H.
    Sommen, F.
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 253 - 268
  • [2] Fueter polynomials in discrete Clifford analysis
    H. De Ridder
    H. De Schepper
    F. Sommen
    Mathematische Zeitschrift, 2012, 272 : 253 - 268
  • [3] A generalization of Fueter's theorem in Dunkl-Clifford analysis
    Li, Shanshan
    Fei, Minggang
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (08) : 1161 - 1171
  • [4] Fueter's theorem and its generalizations in Dunkl-Clifford analysis
    Fei, Minggang
    Cerejeiras, Paula
    Kaehler, Uwe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
  • [5] A generalization of Fueter's theorem
    Peña D.P.
    Sommen F.
    Results in Mathematics, 2006, 49 (3-4) : 301 - 311
  • [6] On the inversion of Fueter's theorem
    Dong, Baohua
    Kou, Kit Ian
    Qian, Tao
    Sabadini, Irene
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 108 : 102 - 116
  • [7] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [8] New Generalizations of Fueter's Theorem
    Kou, Kit-Ian
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [10] Titchmarsh’s Theorem in Clifford Analysis
    Youssef El Haoui
    Advances in Applied Clifford Algebras, 2021, 31