Fueter's theorem in discrete Clifford analysis

被引:0
|
作者
De Ridder, Hilde [1 ]
Sommen, Frank [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Bldg S22,Galglaan 2, B-9000 Ghent, Belgium
基金
比利时弗兰德研究基金会;
关键词
discrete Clifford analysis; axial monogenicity; Fueter theorem;
D O I
10.1002/mma.3612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discretize techniques for the construction of axially monogenic functions to the setting of discrete Clifford analysis. Wherefore, we work in the discrete Hermitian Clifford setting, where each basis vector e(j) is split into a forward and backward basis vector: ej=ej++ej-. We prove a discrete version of Fueter's theorem in odd dimension by showing that for a discrete monogenic function f((0),(1)) left-monogenic in two variables (0) and (1) and for a left-monogenic P-k(), the m-dimensional function k+m-12f(01)Pk() is in itself left monogenic, that is, a discrete function in the kernel of the discrete Dirac operator. Closely related, we consider a Vekua-type system for the construction of axially monogenic functions. We consider some explicit examples: the discrete axial-exponential functions and the discrete Clifford-Hermite polynomials. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1908 / 1920
页数:13
相关论文
共 50 条
  • [21] Fueter's Theorem for One Class of Pseudoanalytic Functions
    Han, Yuanyuan
    Lian, Pan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (05)
  • [22] Clifford's theorem for bricks
    Kozakai, Yuta
    Sakai, Arashi
    JOURNAL OF ALGEBRA, 2025, 663 : 765 - 785
  • [23] On tropical Clifford's Theorem
    Facchini, Laura
    RICERCHE DI MATEMATICA, 2010, 59 (02) : 343 - 349
  • [24] Clifford's Theorem for graphs
    Coppens, Marc
    ADVANCES IN GEOMETRY, 2016, 16 (03) : 389 - 400
  • [25] Gegenbauer polynomials and the Fueter theorem
    Eelbode, David
    Soucek, V.
    Van Lancker, P.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (06) : 826 - 840
  • [26] Fueter’s Theorem for Monogenic Functions in Biaxial Symmetric Domains
    Dixan Peña Peña
    Irene Sabadini
    Franciscus Sommen
    Results in Mathematics, 2017, 72 : 1747 - 1758
  • [27] Factorisations of the Helmholtz Operator, Rad's Theorem, and Clifford Analysis
    Gonzalez-Flores, C.
    Zeron, E. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (01) : 89 - 101
  • [28] Factorisations of the Helmholtz Operator, Radó’s Theorem, and Clifford Analysis
    C. Gonzalez–Flores
    E. S. Zeron
    Advances in Applied Clifford Algebras, 2011, 21 : 89 - 101
  • [29] THE INVERSE FUETER MAPPING THEOREM
    Colombo, Fabrizio
    Sabadini, Irene
    Sommen, Frank
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) : 1165 - 1181
  • [30] A compactness theorem for Fueter sections
    Walpuski, Thomas
    COMMENTARII MATHEMATICI HELVETICI, 2017, 92 (04) : 751 - 776