Fueter's theorem in discrete Clifford analysis

被引:0
|
作者
De Ridder, Hilde [1 ]
Sommen, Frank [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Bldg S22,Galglaan 2, B-9000 Ghent, Belgium
基金
比利时弗兰德研究基金会;
关键词
discrete Clifford analysis; axial monogenicity; Fueter theorem;
D O I
10.1002/mma.3612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discretize techniques for the construction of axially monogenic functions to the setting of discrete Clifford analysis. Wherefore, we work in the discrete Hermitian Clifford setting, where each basis vector e(j) is split into a forward and backward basis vector: ej=ej++ej-. We prove a discrete version of Fueter's theorem in odd dimension by showing that for a discrete monogenic function f((0),(1)) left-monogenic in two variables (0) and (1) and for a left-monogenic P-k(), the m-dimensional function k+m-12f(01)Pk() is in itself left monogenic, that is, a discrete function in the kernel of the discrete Dirac operator. Closely related, we consider a Vekua-type system for the construction of axially monogenic functions. We consider some explicit examples: the discrete axial-exponential functions and the discrete Clifford-Hermite polynomials. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1908 / 1920
页数:13
相关论文
共 50 条
  • [31] The Symplectic Fueter–Sce Theorem
    David Eelbode
    Sonja Hohloch
    Guner Muarem
    Advances in Applied Clifford Algebras, 2020, 30
  • [32] The Fueter Theorem by Representation Theory
    Eelbode, David
    Van Lancker, Peter
    Soucek, Vladimir
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 340 - 343
  • [33] Rotations in discrete Clifford analysis
    De Ridder, H.
    Raeymaekers, T.
    Sommen, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 114 - 140
  • [34] Fueter's Theorem for Monogenic Functions in Biaxial Symmetric Domains
    Pena, Dixan Pena
    Sabadini, Irene
    Sommen, Franciscus
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1747 - 1758
  • [35] On Pauli’s Theorem in Clifford Algebras
    S. P. Kuznetsov
    V. V. Mochalov
    V. P. Chuev
    Russian Mathematics, 2019, 63 : 13 - 27
  • [36] Beurling's Theorem in the Clifford Algebras
    Tyr, Othman
    Daher, Radouan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (03)
  • [37] On Clifford's theorem for singular curves
    Franciosi, M.
    Tenni, Elisa
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 225 - 252
  • [38] Clifford’s theorem for coherent systems
    H. Lange
    P. E. Newstead
    Archiv der Mathematik, 2008, 90 : 209 - 216
  • [39] Clifford’s Theorem for Orbit Categories
    Alexander Zimmermann
    Applied Categorical Structures, 2023, 31
  • [40] Clifford's Theorem for Orbit Categories
    Zimmermann, Alexander
    APPLIED CATEGORICAL STRUCTURES, 2023, 31 (02)