In this paper, we discretize techniques for the construction of axially monogenic functions to the setting of discrete Clifford analysis. Wherefore, we work in the discrete Hermitian Clifford setting, where each basis vector e(j) is split into a forward and backward basis vector: ej=ej++ej-. We prove a discrete version of Fueter's theorem in odd dimension by showing that for a discrete monogenic function f((0),(1)) left-monogenic in two variables (0) and (1) and for a left-monogenic P-k(), the m-dimensional function k+m-12f(01)Pk() is in itself left monogenic, that is, a discrete function in the kernel of the discrete Dirac operator. Closely related, we consider a Vekua-type system for the construction of axially monogenic functions. We consider some explicit examples: the discrete axial-exponential functions and the discrete Clifford-Hermite polynomials. Copyright (c) 2015 John Wiley & Sons, Ltd.
机构:
Charles Univ Prague, Fac Math & Phys, Math Inst, Prague, Czech RepublicAntwerp Univ, Dept Math & Comp Sci, Middelheimlaan 1, B-2020 Antwerp, Belgium
Soucek, Vladimir
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B,
2012,
1479
: 340
-
343
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Pena, Dixan Pena
Sabadini, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Sabadini, Irene
Sommen, Franciscus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, BelgiumPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
机构:
Univ Picardie, Dept Math, 33 Rue St Leu, F-80039 Amiens 1, France
Univ Picardie, LAMFA UMR CNRS 7352, 33 Rue St Leu, F-80039 Amiens 1, FranceUniv Picardie, Dept Math, 33 Rue St Leu, F-80039 Amiens 1, France