Fueter's Theorem for Monogenic Functions in Biaxial Symmetric Domains

被引:6
|
作者
Pena, Dixan Pena [1 ]
Sabadini, Irene [1 ]
Sommen, Franciscus [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Clifford monogenic functions; Fueter's theorem; Fischer decomposition; FORM;
D O I
10.1007/s00025-017-0732-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fueter's theorem discloses a remarkable connection existing between holomorphic functions and monogenic functions in when m is odd. It states that is monogenic if is holomorphic and is a homogeneous monogenic polynomial in . Eelbode et al. (AIP Conf Proc 1479:340-343, 2012) proved that this statement is still valid if the monogenicity condition on is dropped. To obtain this result, the authors used representation theory methods but their result also follows from a direct calculus we established in our paper Pea Pea and Sommen (J Math Anal Appl 365:29-35, 2010). In this paper we generalize the result from Eelbode et al. (2012) to the case of monogenic functions in biaxially symmetric domains. In order to achieve this goal we first generalize Pea Pea and Sommen (2010) to the biaxial case and then derive the main result from that.
引用
收藏
页码:1747 / 1758
页数:12
相关论文
共 50 条
  • [1] Fueter’s Theorem for Monogenic Functions in Biaxial Symmetric Domains
    Dixan Peña Peña
    Irene Sabadini
    Franciscus Sommen
    Results in Mathematics, 2017, 72 : 1747 - 1758
  • [2] Biaxial monogenic functions from Funk-Hecke's formula combined with Fueter's theorem
    Pena, Dixan Pena
    Sommen, Frank
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) : 1718 - 1726
  • [3] THE BIAXIAL FUETER THEOREM
    Eelbode, David
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (01) : 233 - 245
  • [4] The biaxial Fueter theorem
    David Eelbode
    Israel Journal of Mathematics, 2014, 201 : 233 - 245
  • [5] The inverse Fueter mapping theorem for axially monogenic functions of degree k
    Dong, Baohua
    Kou, Kit Ian
    Qian, Tao
    Sabadini, Irene
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (02) : 819 - 835
  • [6] THE FUETER PRIMITIVE OF BIAXIALLY MONOGENIC FUNCTIONS
    Colombo, Fabrizio
    Sabadini, Irene
    Sommen, Frank
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 657 - 672
  • [7] On the Fueter-Sce theorem for generalized partial-slice monogenic functions
    Xu, Zhenghua
    Sabadini, Irene
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, : 835 - 857
  • [8] Fueter's Theorem for One Class of Pseudoanalytic Functions
    Han, Yuanyuan
    Lian, Pan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (05)
  • [9] Bohr's theorem for monogenic functions
    Guerlebeck, K.
    Morais, J.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 750 - +
  • [10] A generalization of Fueter's theorem
    Peña D.P.
    Sommen F.
    Results in Mathematics, 2006, 49 (3-4) : 301 - 311