Fueter's Theorem for Monogenic Functions in Biaxial Symmetric Domains

被引:6
|
作者
Pena, Dixan Pena [1 ]
Sabadini, Irene [1 ]
Sommen, Franciscus [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Clifford monogenic functions; Fueter's theorem; Fischer decomposition; FORM;
D O I
10.1007/s00025-017-0732-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fueter's theorem discloses a remarkable connection existing between holomorphic functions and monogenic functions in when m is odd. It states that is monogenic if is holomorphic and is a homogeneous monogenic polynomial in . Eelbode et al. (AIP Conf Proc 1479:340-343, 2012) proved that this statement is still valid if the monogenicity condition on is dropped. To obtain this result, the authors used representation theory methods but their result also follows from a direct calculus we established in our paper Pea Pea and Sommen (J Math Anal Appl 365:29-35, 2010). In this paper we generalize the result from Eelbode et al. (2012) to the case of monogenic functions in biaxially symmetric domains. In order to achieve this goal we first generalize Pea Pea and Sommen (2010) to the biaxial case and then derive the main result from that.
引用
收藏
页码:1747 / 1758
页数:12
相关论文
共 50 条
  • [11] Riemann-Hilbert problems for monogenic functions in axially symmetric domains
    Fuli He
    Min Ku
    Uwe Kähler
    Frank Sommen
    Swanhild Bernstein
    Boundary Value Problems, 2016
  • [12] On the inversion of Fueter's theorem
    Dong, Baohua
    Kou, Kit Ian
    Qian, Tao
    Sabadini, Irene
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 108 : 102 - 116
  • [13] Riemann-Hilbert problems for monogenic functions in axially symmetric domains
    He, Fuli
    Ku, Min
    Kahler, Uwe
    Sommen, Frank
    Bernstein, Swanhild
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 11
  • [14] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [15] Hadamard's Real Part Theorem for Monogenic Functions
    Guerlebeck, K.
    Morais, J.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 654 - 657
  • [16] New Generalizations of Fueter's Theorem
    Kou, Kit-Ian
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [17] Jackson's Theorem on Bounded Symmetric Domains
    Ming Zhi WANG School of Science
    Acta Mathematica Sinica,English Series, 2007, (08) : 1391 - 1404
  • [18] Jackson's Theorem on Bounded Symmetric Domains
    Ming Zhi Wang
    Guang Bin Ren*
    Acta Mathematica Sinica, English Series, 2007, 23 : 1391 - 1404
  • [19] Jackson's theorem on bounded symmetric domains
    Wang, Ming Zhi
    Ren, Guang Bin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (08) : 1391 - 1404
  • [20] A UNIQUENESS THEOREM FOR MONOGENIC FUNCTIONS
    WINKLER, J
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1993, 18 (01): : 105 - 116