Fueter's Theorem for Monogenic Functions in Biaxial Symmetric Domains
被引:6
|
作者:
Pena, Dixan Pena
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Pena, Dixan Pena
[1
]
Sabadini, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Sabadini, Irene
[1
]
Sommen, Franciscus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, BelgiumPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Sommen, Franciscus
[2
]
机构:
[1] Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
Fueter's theorem discloses a remarkable connection existing between holomorphic functions and monogenic functions in when m is odd. It states that is monogenic if is holomorphic and is a homogeneous monogenic polynomial in . Eelbode et al. (AIP Conf Proc 1479:340-343, 2012) proved that this statement is still valid if the monogenicity condition on is dropped. To obtain this result, the authors used representation theory methods but their result also follows from a direct calculus we established in our paper Pea Pea and Sommen (J Math Anal Appl 365:29-35, 2010). In this paper we generalize the result from Eelbode et al. (2012) to the case of monogenic functions in biaxially symmetric domains. In order to achieve this goal we first generalize Pea Pea and Sommen (2010) to the biaxial case and then derive the main result from that.