This paper deals with a special type of solutions for the Dirac operator on R-m, which can be obtained through a biaxial generalisation of the classical Fueter Theorem. This is a result which allows to generate zonal solutions for the Dirac equation starting from arbitrary holomorphic functions in the complex plane. Invoking operator identities for Jacobi polynomials, it is shown how this procedure can be extended to more general splittings than the one usually considered in the literature.
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Pena, Dixan Pena
Sabadini, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Sabadini, Irene
Sommen, Franciscus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, BelgiumPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
机构:
Clifford Research Group, Department of Mathematical Analysis, Ghent University, 9000 GentClifford Research Group, Department of Mathematical Analysis, Ghent University, 9000 Gent