Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images

被引:0
|
作者
Segato dos Santos, Luiz Fernando [1 ]
Rozendo, Guilherme Botazzo [1 ]
do Nascimento, Marcelo Zanchetta [2 ]
Azevedo Tosta, Thaina Aparecida [3 ]
da Costa Longo, Leonardo Henrique [1 ]
Neves, Leandro Alves [1 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci & Stat DCCE, Sao Jose Do Rio Preto, Brazil
[2] Fed Univ Uberrandia UFU, Fac Comp Sci FACOM, Uberlandia, MG, Brazil
[3] Fed Univ Sao Paulo UNIFESP, Sci & Technol Inst, Sao Jose Dos Campos, Brazil
关键词
shannon entropy; multiscale; multidimensional; combination; colorectal images; FRACTAL DIMENSION;
D O I
10.1109/IWSSIP55020.2022.9854438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named H-M. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination H-M and SampEn(MF). The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Utilizing H&E Images and Digital Pathology to Predict Response to Buparlisib in SCCHN
    Soulieres, Denis
    Lucas, Justin
    Desilets, Antoine
    Matcovitch-Natan, Orit
    Bart, Amit
    Zvi, Shir Rosen
    Gutwillig, Amit
    Dreyer, Kevin
    Tang, Tom
    Birgerson, Lars
    Lorch, Jochen
    Licitra, Lisa
    RADIOTHERAPY AND ONCOLOGY, 2024, 192 : S11 - S12
  • [42] The reasonability of the density of immune cells in H&E sections of colorectal cancer as the the immunological biomarker
    Matsutani, Shinji
    Shibutani, Masatsune
    Maeda, Kiyoshi
    Nagahara, Hisashi
    Fukuoka, Tatsunari
    Iseki, Yasuhito
    Kashiwagi, Shinichiro
    Toyokawa, Takahiro
    Amano, Ryosuke
    Tanaka, Hiroaki
    Muguruma, Kazuya
    Hirakawa, Kosei
    Ohira, Masaichi
    CANCER SCIENCE, 2018, 109 : 1332 - 1332
  • [43] An Empirical Evaluation of Nuclei Segmentation from H&E Images in a Real Application Scenario
    Putzu, Lorenzo
    Fumera, Giorgio
    APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 15
  • [44] Elastic and collagen fibers discriminant analysis using H&E stained hyperspectral images
    Septiana, Lina
    Suzuki, Hiroyuki
    Ishikawa, Masahiro
    Obi, Takashi
    Kobayashi, Naoki
    Ohyama, Nagaaki
    Ichimura, Takaya
    Sasaki, Atsushi
    Wihardjo, Erning
    Andiani, Dini
    OPTICAL REVIEW, 2019, 26 (04) : 369 - 379
  • [45] A Novel Probabilistic Nuclei Segmentation Algorithm for H&E Stained Histopathological Tissue Images
    Serin, Faruk
    Erturkler, Metin
    Gul, Mehmet
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (01): : 7 - 17
  • [46] Semantic Segmentation of Microscopic Images of H&E Stained Prostatic Tissue using CNN
    Isaksson, Johan
    Arvidsson, Ida
    Astrom, Kalle
    Heyden, Anders
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1252 - 1256
  • [47] Localization of Eosinophilic Esophagitis from H&E stained images using multispectral imaging
    Pinky A Bautista
    Yukako Yagi
    Diagnostic Pathology, 6
  • [48] Evaluation of sparsity metrics and evolutionary algorithms applied for normalization of H&E histological images
    Tosta, Thaina A. Azevedo
    de Faria, Paulo Rogerio
    Neves, Leandro Alves
    Martins, Alessandro Santana
    Kaushal, Chetna
    do Nascimento, Marcelo Zanchetta
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [49] Localization of Eosinophilic Esophagitis from H&E stained images using multispectral imaging
    Bautista, Pinky A.
    Yagi, Yukako
    DIAGNOSTIC PATHOLOGY, 2011, 6
  • [50] Artificial intelligence quantifies key prognostic factors of melanoma from H&E images
    Salhi, Y.
    Rynkiewicz, J.
    Bossard, C.
    Nakhjavani, A.
    Salhi, S.
    Chetritt, J.
    VIRCHOWS ARCHIV, 2024, 485 : S225 - S225