Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images

被引:0
|
作者
Segato dos Santos, Luiz Fernando [1 ]
Rozendo, Guilherme Botazzo [1 ]
do Nascimento, Marcelo Zanchetta [2 ]
Azevedo Tosta, Thaina Aparecida [3 ]
da Costa Longo, Leonardo Henrique [1 ]
Neves, Leandro Alves [1 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci & Stat DCCE, Sao Jose Do Rio Preto, Brazil
[2] Fed Univ Uberrandia UFU, Fac Comp Sci FACOM, Uberlandia, MG, Brazil
[3] Fed Univ Sao Paulo UNIFESP, Sci & Technol Inst, Sao Jose Dos Campos, Brazil
关键词
shannon entropy; multiscale; multidimensional; combination; colorectal images; FRACTAL DIMENSION;
D O I
10.1109/IWSSIP55020.2022.9854438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named H-M. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination H-M and SampEn(MF). The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images
    Brancati, Nadia
    Anniciello, Anna Maria
    Pati, Pushpak
    Riccio, Daniel
    Scognamiglio, Giosue
    Jaume, Guillaume
    De Pietro, Giuseppe
    Di Bonito, Maurizio
    Foncubierta, Antonio
    Botti, Gerardo
    Gabrani, Maria
    Feroce, Florinda
    Frucci, Maria
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2022, 2022
  • [22] Automatic layer segmentation of H&E microscopic images of mice skin
    Hussein, Saif
    Selway, Joanne
    Jassim, Sabah
    Al-Assam, Hisham
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2016, 2016, 9869
  • [23] An Optimized Color Space for the Analysis of Digital Images of H&E Slides
    Zarella, Mark
    Breen, David
    Plagov, Andrei
    Garcia, Fernando
    LABORATORY INVESTIGATION, 2015, 95 : 403A - 403A
  • [24] Semantic segmentation to identify bladder layers from H&E Images
    Niazi, Muhammad Khalid Khan
    Yazgan, Enes
    Tavolara, Thomas E.
    Li, Wencheng
    Lee, Cheryl T.
    Parwani, Anil
    Gurcan, Metin N.
    DIAGNOSTIC PATHOLOGY, 2020, 15 (01)
  • [25] Predicting immunotherapy outcomes from H&E images in lung cancer
    Loo, Jessica
    Wang, Yang
    Wong, Pok Fai
    Wulczyn, Ellery
    Lai, Jeremy
    Cimermancic, Peter
    Steiner, David F.
    Weaver, Shamira S.
    CANCER RESEARCH, 2024, 84 (06)
  • [26] A Classification Scheme for Lymphocyte Segmentation in H&E Stained Histology Images
    Kuse, Manohar
    Sharma, Tanuj
    Gupta, Sudhir
    RECOGNIZING PATTERNS IN SIGNALS, SPEECH, IMAGES, AND VIDEOS, 2010, 6388 : 235 - 243
  • [27] Ensemble Learning-Based Solutions: An Approach for Evaluating Multiple Features in the Context of H&E Histological Images
    Tenguam, Jaqueline J.
    Longo, Leonardo H. da Costa
    Roberto, Guilherme F.
    Tosta, Thaina A. A.
    de Faria, Paulo R.
    Loyola, Adriano M.
    Cardoso, Sergio V.
    Silva, Adriano B.
    do Nascimento, Marcelo Z.
    Neves, Leandro A.
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [28] Is H&E the Optimal Stain for Evaluation of Colorectal Cancer Resection (CRC) Specimens?
    Shivji, Sameer
    Conner, James
    Kirsch, Richard
    MODERN PATHOLOGY, 2018, 31 : 793 - 793
  • [29] MSIreg: an R package for unsupervised coregistration of mass spectrometry and H&E images
    Lakkimsetty, Sai Srikanth
    Weber, Andreas
    Bemis, Kylie A.
    Stehl, Verena
    Bronsert, Peter
    Foell, Melanie C.
    Vitek, Olga
    BIOINFORMATICS, 2024, 40 (11)
  • [30] A new complete color normalization method for H&E stained histopatholgical images
    Surbhi Vijh
    Mukesh Saraswat
    Sumit Kumar
    Applied Intelligence, 2021, 51 : 7735 - 7748