Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images

被引:0
|
作者
Segato dos Santos, Luiz Fernando [1 ]
Rozendo, Guilherme Botazzo [1 ]
do Nascimento, Marcelo Zanchetta [2 ]
Azevedo Tosta, Thaina Aparecida [3 ]
da Costa Longo, Leonardo Henrique [1 ]
Neves, Leandro Alves [1 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci & Stat DCCE, Sao Jose Do Rio Preto, Brazil
[2] Fed Univ Uberrandia UFU, Fac Comp Sci FACOM, Uberlandia, MG, Brazil
[3] Fed Univ Sao Paulo UNIFESP, Sci & Technol Inst, Sao Jose Dos Campos, Brazil
关键词
shannon entropy; multiscale; multidimensional; combination; colorectal images; FRACTAL DIMENSION;
D O I
10.1109/IWSSIP55020.2022.9854438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named H-M. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination H-M and SampEn(MF). The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Subtype-level Segmentation Model for Inflammatory Cells in H&E Images
    Ochi, Mieko
    Komura, Daisuke
    Ishikawa, Shumpei
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1604 - S1605
  • [32] Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
    Veta, Mitko
    van Diest, Paul J.
    Kornegoor, Robert
    Huisman, Andre
    Viergever, Max A.
    Pluim, Josien P. W.
    PLOS ONE, 2013, 8 (07):
  • [33] Utilizing H&E images and digital pathology to predict response to buparlisib in SCCHN
    Soulieres, D.
    Lucas, J.
    Desilets, A.
    Matcovitch-Natan, O.
    Bart, A.
    Laniado, A.
    Gutwillig, A.
    He, N.
    Dreyer, K.
    Zvi, S. Rosen
    Rachmiel, Z.
    Kerner, J. Kaplan
    Yehezkeli, H.
    Tang, T.
    Birgerson, L. E.
    Lu, S.
    Lorch, J.
    Licitra, L. F. L.
    ANNALS OF ONCOLOGY, 2023, 34 : S562 - S562
  • [34] Spatial Statistics for Segmenting Histological Structures in H&E Stained Tissue Images
    Luong Nguyen
    Tosun, Akif Burak
    Fine, Jeffrey L.
    Lee, Adrian V.
    Taylor, D. Lansing
    Chennubhotla, S. Chakra
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (07) : 1522 - 1532
  • [35] A complete framework for automatic grading of H&E stained images of follicular lymphoma
    Koletsa, T.
    Michail, E.
    Kornaropoulos, E.
    Dimitropoulos, K.
    Kostopoulos, I.
    Grammalidis, N.
    VIRCHOWS ARCHIV, 2013, 463 (02) : 227 - 228
  • [36] Is H&E the Optimal Stain for Evaluation of Colorectal Cancer Resection (CRC) Specimens?
    Shivji, Sameer
    Conner, James
    Kirsch, Richard
    LABORATORY INVESTIGATION, 2018, 98 : 793 - 793
  • [37] Using Stain Decomposition for Nucleus Segmentation on Multisource H&E Slide Images
    Hsu, Hung-Chun
    Tsai, Hung-Wen
    Gabrani, Maria
    Chung, Pau-Choo
    Rodriguez, Antonio Foncubierta
    Wu, Yu-Ting
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [38] A new complete color normalization method for H&E stained histopatholgical images
    Vijh, Surbhi
    Saraswat, Mukesh
    Kumar, Sumit
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7735 - 7748
  • [39] AUTOMATIC NUCLEI SEGMENTATION IN H&E PAINTED HISTOPATHOLOGICAL IMAGES WITH DEEP LEARNING
    Yildirim, Zeynep
    Samet, Refik
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 368 - 370
  • [40] Advanced Deep Learning for Segmentation of Cancer Tissues from H&E Images
    Ochi, Mieko
    Komura, Daisuke
    Ushiku, Tetsuo
    Onoyama, Takumi
    Ishikawa, Shumpei
    CANCER SCIENCE, 2025, 116 : 384 - 384