Utilizing H&E Images and Digital Pathology to Predict Response to Buparlisib in SCCHN

被引:0
|
作者
Soulieres, Denis [1 ]
Lucas, Justin [2 ]
Desilets, Antoine [1 ]
Matcovitch-Natan, Orit [3 ]
Bart, Amit [3 ]
Zvi, Shir Rosen [3 ]
Gutwillig, Amit [3 ]
Dreyer, Kevin [4 ]
Tang, Tom [4 ]
Birgerson, Lars [4 ]
Lorch, Jochen [5 ]
Licitra, Lisa [6 ]
机构
[1] CHUM, Hematologue & Oncologue Med, Montreal, PQ, Canada
[2] Adlai Nortye, Translat Res, North Brunswick, NJ USA
[3] Nucleai, Translat Res, Tel Aviv, Israel
[4] Adlai Nortye, Clin Res, North Brunswick, NJ USA
[5] Northwestern Med Grp, Hematol & Med Oncol, Chicago, IL USA
[6] Natl Canc Inst, Head & Neck Tumors, Milan, Italy
关键词
H&E; Image Analysis; Therapeutic Improvement;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
25
引用
收藏
页码:S11 / S12
页数:2
相关论文
共 50 条
  • [1] Utilizing H&E images and digital pathology to predict response to buparlisib in SCCHN
    Soulieres, D.
    Lucas, J.
    Desilets, A.
    Matcovitch-Natan, O.
    Bart, A.
    Laniado, A.
    Gutwillig, A.
    He, N.
    Dreyer, K.
    Zvi, S. Rosen
    Rachmiel, Z.
    Kerner, J. Kaplan
    Yehezkeli, H.
    Tang, T.
    Birgerson, L. E.
    Lu, S.
    Lorch, J.
    Licitra, L. F. L.
    ANNALS OF ONCOLOGY, 2023, 34 : S562 - S562
  • [2] An Optimized Color Space for the Analysis of Digital Images of H&E Slides
    Zarella, Mark
    Breen, David
    Plagov, Andrei
    Garcia, Fernando
    MODERN PATHOLOGY, 2015, 28 : 403A - 403A
  • [3] An Optimized Color Space for the Analysis of Digital Images of H&E Slides
    Zarella, Mark
    Breen, David
    Plagov, Andrei
    Garcia, Fernando
    LABORATORY INVESTIGATION, 2015, 95 : 403A - 403A
  • [4] Characterizing Spatial Patterns of Immune Response in H&E Images from COVID-19 and H1N1 Autopsies Using Digital Pathology
    Toro, Paula
    Corredor, German
    Bera, Kaustav
    Rasmussen, Dylan
    Stroberg, Edana
    Barton, Lisa
    Duval, Eric
    Gilmore, Hannah
    Mukhopadhyay, Sanjay
    Madabhushi, Anant
    MODERN PATHOLOGY, 2021, 34 (SUPPL 2) : 950 - 952
  • [5] Characterizing Spatial Patterns of Immune Response in H&E Images from COVID-19 and H1N1 Autopsies Using Digital Pathology
    Toro, Paula
    Corredor, German
    Bera, Kaustav
    Rasmussen, Dylan
    Stroberg, Edana
    Barton, Lisa
    Duval, Eric
    Gilmore, Hannah
    Mukhopadhyay, Sanjay
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2021, 101 (SUPPL 1) : 950 - 952
  • [6] Unsupervised learning of image embeddings enables new opportunities to extract novel information from digital pathology H&E images
    Hipp, Jason
    Xu, Mona
    Bordeaux, Lucas
    Gu, Feng
    Pedrinaci, Carlos
    Baykaner, Khan
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [7] DRAQ5 AND EOSIN AS A TOPICAL FLUORESCENT ANALOGUE FOR H&E IN DIGITAL PATHOLOGY
    Elfer, Katherine N.
    Sholl, Andrew B.
    Wang, Mei
    Brown, J. Quincy
    2016 32ND SOUTHERN BIOMEDICAL ENGINEERING CONFERENCE (SBEC), 2016, : 53 - 54
  • [8] Improving the Molecular Pathology Workflow with Machine Learning: Automated Calculation of Tumor Percentages on H&E Digital Whole Slide Images
    Cirelli, C. M.
    Velu, P. D.
    Feldman, M. D.
    Rosenbaum, J. N.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (06): : 958 - 958
  • [9] Automated Detection of Diagnostically Relevant Regions in H&E Stained Digital Pathology Slides
    Bahlmann, Claus
    Patel, Amar
    Johnson, Jeffrey
    Ni, Jie
    Chekkoury, Andrei
    Khurd, Parmeshwar
    Kamen, Ali
    Grady, Leo
    Krupinski, Elizabeth
    Graham, Anna
    Weinstein, Ronald
    MEDICAL IMAGING 2012: COMPUTER-AIDED DIAGNOSIS, 2012, 8315
  • [10] Unsupervised Segmentation of H&E Breast Images
    Hope, Tyna A.
    Yaffe, Martin J.
    MEDICAL IMAGING 2017: DIGITAL PATHOLOGY, 2017, 10140