Utilizing H&E Images and Digital Pathology to Predict Response to Buparlisib in SCCHN

被引:0
|
作者
Soulieres, Denis [1 ]
Lucas, Justin [2 ]
Desilets, Antoine [1 ]
Matcovitch-Natan, Orit [3 ]
Bart, Amit [3 ]
Zvi, Shir Rosen [3 ]
Gutwillig, Amit [3 ]
Dreyer, Kevin [4 ]
Tang, Tom [4 ]
Birgerson, Lars [4 ]
Lorch, Jochen [5 ]
Licitra, Lisa [6 ]
机构
[1] CHUM, Hematologue & Oncologue Med, Montreal, PQ, Canada
[2] Adlai Nortye, Translat Res, North Brunswick, NJ USA
[3] Nucleai, Translat Res, Tel Aviv, Israel
[4] Adlai Nortye, Clin Res, North Brunswick, NJ USA
[5] Northwestern Med Grp, Hematol & Med Oncol, Chicago, IL USA
[6] Natl Canc Inst, Head & Neck Tumors, Milan, Italy
关键词
H&E; Image Analysis; Therapeutic Improvement;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
25
引用
收藏
页码:S11 / S12
页数:2
相关论文
共 50 条
  • [31] Quantitative diagnosis of bladder cancer by morphometric analysis of H&E images
    Wu, Binlin
    Nebylitsa, Samantha V.
    Mukherjee, Sushmita
    Jain, Manu
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS XI, 2015, 9303
  • [32] Semantic segmentation to identify bladder layers from H&E Images
    Muhammad Khalid Khan Niazi
    Enes Yazgan
    Thomas E. Tavolara
    Wencheng Li
    Cheryl T. Lee
    Anil Parwani
    Metin N. Gurcan
    Diagnostic Pathology, 15
  • [33] Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials
    Talha Qaiser
    Ching-Yi Lee
    Michel Vandenberghe
    Joe Yeh
    Marios A. Gavrielides
    Jason Hipp
    Marietta Scott
    Joachim Reischl
    npj Precision Oncology, 6
  • [34] Classification of Multiple H&E Images via an Ensemble Computational Scheme
    da Costa Longo, Leonardo H.
    Roberto, Guilherme F.
    Tosta, Thaina A. A.
    de Faria, Paulo R.
    Loyola, Adriano M.
    Cardoso, Sergio V.
    Silva, Adriano B.
    do Nascimento, Marcelo Z.
    Neves, Leandro A.
    ENTROPY, 2024, 26 (01)
  • [35] Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials
    Qaiser, Talha
    Lee, Ching-Yi
    Vandenberghe, Michel
    Yeh, Joe
    Gavrielides, Marios A.
    Hipp, Jason
    Scott, Marietta
    Reischl, Joachim
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)
  • [36] InvUnet:Inverse the Unet for Nuclear Segmentation in H&E Stained Images
    Zhang, Lifeng
    Li, Bin
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 251 - 256
  • [37] BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images
    Brancati, Nadia
    Anniciello, Anna Maria
    Pati, Pushpak
    Riccio, Daniel
    Scognamiglio, Giosue
    Jaume, Guillaume
    De Pietro, Giuseppe
    Di Bonito, Maurizio
    Foncubierta, Antonio
    Botti, Gerardo
    Gabrani, Maria
    Feroce, Florinda
    Frucci, Maria
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2022, 2022
  • [38] Automatic layer segmentation of H&E microscopic images of mice skin
    Hussein, Saif
    Selway, Joanne
    Jassim, Sabah
    Al-Assam, Hisham
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2016, 2016, 9869
  • [39] Semantic segmentation to identify bladder layers from H&E Images
    Niazi, Muhammad Khalid Khan
    Yazgan, Enes
    Tavolara, Thomas E.
    Li, Wencheng
    Lee, Cheryl T.
    Parwani, Anil
    Gurcan, Metin N.
    DIAGNOSTIC PATHOLOGY, 2020, 15 (01)
  • [40] Predicting immunotherapy outcomes from H&E images in lung cancer
    Loo, Jessica
    Wang, Yang
    Wong, Pok Fai
    Wulczyn, Ellery
    Lai, Jeremy
    Cimermancic, Peter
    Steiner, David F.
    Weaver, Shamira S.
    CANCER RESEARCH, 2024, 84 (06)