Utilizing H&E Images and Digital Pathology to Predict Response to Buparlisib in SCCHN

被引:0
|
作者
Soulieres, Denis [1 ]
Lucas, Justin [2 ]
Desilets, Antoine [1 ]
Matcovitch-Natan, Orit [3 ]
Bart, Amit [3 ]
Zvi, Shir Rosen [3 ]
Gutwillig, Amit [3 ]
Dreyer, Kevin [4 ]
Tang, Tom [4 ]
Birgerson, Lars [4 ]
Lorch, Jochen [5 ]
Licitra, Lisa [6 ]
机构
[1] CHUM, Hematologue & Oncologue Med, Montreal, PQ, Canada
[2] Adlai Nortye, Translat Res, North Brunswick, NJ USA
[3] Nucleai, Translat Res, Tel Aviv, Israel
[4] Adlai Nortye, Clin Res, North Brunswick, NJ USA
[5] Northwestern Med Grp, Hematol & Med Oncol, Chicago, IL USA
[6] Natl Canc Inst, Head & Neck Tumors, Milan, Italy
关键词
H&E; Image Analysis; Therapeutic Improvement;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
25
引用
收藏
页码:S11 / S12
页数:2
相关论文
共 50 条
  • [21] Comparison of Deep Learning Architectures for H&E Histopathology Images
    Sun, Jiamei
    Binder, Alexander
    2017 IEEE CONFERENCE ON BIG DATA AND ANALYTICS (ICBDA), 2017, : 43 - 48
  • [22] Identifying neutrophils in H&E staining histology tissue images
    Wang, Jiazhuo, 1600, Springer Verlag (8673):
  • [23] Digital quantification of lymphocytic infiltration on routine H&E images and immunotherapy response in non-small cell lung cancer.
    Rakaee, Mehrdad
    Adib, Elio
    Ricciuti, Biagio
    Sholl, Lynette M.
    Alessi, Joao Victor Machado
    Cortellini, Alessio
    Fulgenzi, Claudia A. M.
    Pinato, David J. James
    Hashemi, Sayed Ms
    Bahce, Idris
    Houda, Ilias
    Vayrynen, Juha P.
    Richardsen, Elin
    Busund, Lill-Tove Rasmussen
    Andersen, Sigve
    Donnem, Tom
    Awad, Mark M.
    Kwiatkowski, David J.
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [24] Intrinsic Pathology: Unlocking Hidden Potential of H&E Histopathology Staining
    Puebla-Robles, Guillermo
    Schwartz, Abraham
    Correa-Rivas, Maria
    LABORATORY INVESTIGATION, 2025, 105 (03)
  • [25] Development of a TMB classifier on NSCLC H&E images.
    Jerusalmi, Alan
    CLINICAL CANCER RESEARCH, 2020, 27 (06)
  • [26] Identifying Neutrophils in H&E Staining Histology Tissue Images
    Wang, Jiazhuo
    MacKenzie, John D.
    Ramachandran, Rageshree
    Chen, Danny Z.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 73 - +
  • [27] Intratumoral heterogeneity of radioisotopic FDG and pathology H&E images using earth mover distance and radiomics in TNBC PDX
    Roy, Sudipta
    Whitehead, Timothy
    Klaas, Amanda
    Shoghi, Kooresh
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [28] Construction of a Generative Model of H&E Stained Pathology Images of Pancreas Tumors Conditioned by a Voxel Value of MRI Image
    Shimomura, Tomoshige
    Mauricio, Kugler
    Yokota, Tatsuya
    Iwamoto, Chika
    Ohuchida, Kenoki
    Hashizume, Makoto
    Hontani, Hidekata
    COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 27 - 34
  • [29] Identification of the PDAC immunogenic subtype using deep learning with multi- scaled digital H&E images
    Si, Han
    Xu, Steven
    Muthuswamy, Anantharaman
    Liang, Ryan
    Sasser, Kate
    Hamadeh, Hisham K.
    Couto, Suzana
    Higgs, Brandon
    CANCER RESEARCH, 2022, 82 (12)
  • [30] Classification of Elastic and Collagen Fibers in H&E Stained Hyperspectral Images
    Septiana, Lina
    Suzuki, Hiroyuki
    Ishikawa, Masahiro
    Obi, Takashi
    Kobayashi, Naoki
    Ohyama, Nagaaki
    Wihardjo, Erning
    Andiani, Dini
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 7031 - 7035