Utilizing H&E Images and Digital Pathology to Predict Response to Buparlisib in SCCHN

被引:0
|
作者
Soulieres, Denis [1 ]
Lucas, Justin [2 ]
Desilets, Antoine [1 ]
Matcovitch-Natan, Orit [3 ]
Bart, Amit [3 ]
Zvi, Shir Rosen [3 ]
Gutwillig, Amit [3 ]
Dreyer, Kevin [4 ]
Tang, Tom [4 ]
Birgerson, Lars [4 ]
Lorch, Jochen [5 ]
Licitra, Lisa [6 ]
机构
[1] CHUM, Hematologue & Oncologue Med, Montreal, PQ, Canada
[2] Adlai Nortye, Translat Res, North Brunswick, NJ USA
[3] Nucleai, Translat Res, Tel Aviv, Israel
[4] Adlai Nortye, Clin Res, North Brunswick, NJ USA
[5] Northwestern Med Grp, Hematol & Med Oncol, Chicago, IL USA
[6] Natl Canc Inst, Head & Neck Tumors, Milan, Italy
关键词
H&E; Image Analysis; Therapeutic Improvement;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
25
引用
收藏
页码:S11 / S12
页数:2
相关论文
共 50 条
  • [41] A Classification Scheme for Lymphocyte Segmentation in H&E Stained Histology Images
    Kuse, Manohar
    Sharma, Tanuj
    Gupta, Sudhir
    RECOGNIZING PATTERNS IN SIGNALS, SPEECH, IMAGES, AND VIDEOS, 2010, 6388 : 235 - 243
  • [42] Single color digital H&E staining with In-and-Out Net
    Chen, Mengkun
    Liu, Yen-Tung
    Khan, Fadeel Sher
    Fox, Matthew C.
    Reichenberg, Jason S.
    Lopes, Fabiana C. P. S.
    Sebastian, Katherine R.
    Markey, Mia K.
    Tunnell, James W.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 118
  • [43] Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer
    Nero, Camilla
    Boldrini, Luca
    Lenkowicz, Jacopo
    Giudice, Maria Teresa
    Piermattei, Alessia
    Inzani, Frediano
    Pasciuto, Tina
    Minucci, Angelo
    Fagotti, Anna
    Zannoni, Gianfranco
    Valentini, Vincenzo
    Scambia, Giovanni
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (19)
  • [44] Prediction of distant melanoma recurrence from primary tumor digital H&E images using deep learning.
    Robinson, Eric
    Kulkarni, Prathamesh M.
    Pradhan, Jaya Sarin
    Gartrell, Robyn Denise
    Yang, Chen
    Rizk, Emanuelle M.
    Acs, Balazs
    Rohr, Bethany
    Phelps, Robert
    Ferringer, Tammie
    Horst, Basil
    Rimm, David L.
    Wang, Jing
    Saenger, Yvonne M.
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [45] Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology
    Agraz, Jose L.
    Agraz, Carlos
    Chen, Andrew A.
    Rice, Charles
    Pozos, Robert S.
    Aelterman, Sven
    Tan, Amanda
    Viaene, Angela N.
    Nasrallah, MacLean P.
    Sharma, Parth
    Grenko, Caleb M.
    Kurc, Tahsin
    Saltz, Joel
    Feldman, Michael D.
    Akbari, Hamed
    Shinohara, Russell T.
    Bakas, Spyridon
    Wilson, Parker
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2025, 6 : 35 - 40
  • [46] Spatial-statistics-based modeling for predicting treatment response in non-small cell lung cancer (NSCLC) patients using H&E pathology images
    Li, X.
    Gaire, F.
    Jansen, G.
    Copping, R.
    Bengtsson, T.
    Dai, J.
    ANNALS OF ONCOLOGY, 2020, 31 : S879 - S879
  • [47] MSIreg: an R package for unsupervised coregistration of mass spectrometry and H&E images
    Lakkimsetty, Sai Srikanth
    Weber, Andreas
    Bemis, Kylie A.
    Stehl, Verena
    Bronsert, Peter
    Foell, Melanie C.
    Vitek, Olga
    BIOINFORMATICS, 2024, 40 (11)
  • [48] A new complete color normalization method for H&E stained histopatholgical images
    Surbhi Vijh
    Mukesh Saraswat
    Sumit Kumar
    Applied Intelligence, 2021, 51 : 7735 - 7748
  • [49] Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images
    Segato dos Santos, Luiz Fernando
    Rozendo, Guilherme Botazzo
    do Nascimento, Marcelo Zanchetta
    Azevedo Tosta, Thaina Aparecida
    da Costa Longo, Leonardo Henrique
    Neves, Leandro Alves
    2022 29TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2022,
  • [50] Subtype-level Segmentation Model for Inflammatory Cells in H&E Images
    Ochi, Mieko
    Komura, Daisuke
    Ishikawa, Shumpei
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1604 - S1605