Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images

被引:0
|
作者
Segato dos Santos, Luiz Fernando [1 ]
Rozendo, Guilherme Botazzo [1 ]
do Nascimento, Marcelo Zanchetta [2 ]
Azevedo Tosta, Thaina Aparecida [3 ]
da Costa Longo, Leonardo Henrique [1 ]
Neves, Leandro Alves [1 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci & Stat DCCE, Sao Jose Do Rio Preto, Brazil
[2] Fed Univ Uberrandia UFU, Fac Comp Sci FACOM, Uberlandia, MG, Brazil
[3] Fed Univ Sao Paulo UNIFESP, Sci & Technol Inst, Sao Jose Dos Campos, Brazil
关键词
shannon entropy; multiscale; multidimensional; combination; colorectal images; FRACTAL DIMENSION;
D O I
10.1109/IWSSIP55020.2022.9854438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named H-M. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination H-M and SampEn(MF). The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer
    Segato dos Santos, Luiz Fernando
    Neves, Leandro Alves
    Rozendo, Guilherme Botazzo
    Ribeiro, Matheus Goncalves
    do Nascimento, Marcelo Zanchetta
    Azevedo Tosta, Thaina Aparecida
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 103 : 148 - 160
  • [2] Unsupervised Segmentation of H&E Breast Images
    Hope, Tyna A.
    Yaffe, Martin J.
    MEDICAL IMAGING 2017: DIGITAL PATHOLOGY, 2017, 10140
  • [3] A Self-Supervised AI Learning Approach Extracts Morphological Meaning From H&E Images of Colorectal Cancer
    Sidlauskas, Kastytis
    Shephard, Adam
    Thorat, Mangesh
    Rajpoot, Nasir
    Jones, J. Louise
    JOURNAL OF PATHOLOGY, 2024, 264 : S16 - S16
  • [4] DETECTION OF CENTROBLASTS IN H&E STAINED IMAGES OF FOLLICULAR LYMPHOMA
    Michail, Emmanouil
    Kornaropoulos, Evgenios N.
    Dimitropoulos, Kosmas
    Grammalidis, Nikos
    Koletsa, Triantafyllia
    Kostopoulos, Ioannis
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 2319 - 2322
  • [5] Comparison of Deep Learning Architectures for H&E Histopathology Images
    Sun, Jiamei
    Binder, Alexander
    2017 IEEE CONFERENCE ON BIG DATA AND ANALYTICS (ICBDA), 2017, : 43 - 48
  • [6] Identifying neutrophils in H&E staining histology tissue images
    Wang, Jiazhuo, 1600, Springer Verlag (8673):
  • [7] Development of a TMB classifier on NSCLC H&E images.
    Jerusalmi, Alan
    CLINICAL CANCER RESEARCH, 2020, 27 (06)
  • [8] Identifying Neutrophils in H&E Staining Histology Tissue Images
    Wang, Jiazhuo
    MacKenzie, John D.
    Ramachandran, Rageshree
    Chen, Danny Z.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 73 - +
  • [9] AN EFFECTIVE DEEP LEARNING ARCHITECTURE COMBINATION FOR TISSUE MICROARRAY SPOTS CLASSIFICATION OF H&E STAINED COLORECTAL IMAGES
    Huu-Giao Nguyen
    Blank, Annika
    Lugli, Alessandro
    Zlobec, Inti
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1271 - 1274
  • [10] Deep learned tissue "fingerprints" classify breast cancers by ER/PR/Her2 status from H&E images
    Rawat, Rishi R.
    Ortega, Itzel
    Roy, Preeyam
    Sha, Fei
    Shibata, Darryl
    Ruderman, Daniel
    Agus, David B.
    SCIENTIFIC REPORTS, 2020, 10 (01)