On combining variable ordering heuristics for constraint satisfaction problems

被引:3
|
作者
Li, Hongbo [1 ]
Feng, Guozhong [1 ]
Yin, Minghao [1 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint satisfaction problem; Variable ordering heuristic; Activity-based search; Dom; wdeg; Impact-based search;
D O I
10.1007/s10732-019-09434-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable ordering heuristics play a central role in solving constraint satisfaction problems. Combining two variable ordering heuristics may generate a more efficient heuristic, such as dom/deg. In this paper, we propose a novel method for combining two variable ordering heuristics, namely Pearson-Correlation-Coefficient-based Combination (PCCC). While the existing combination strategies always combine participant heuristics, PCCC checks whether the participant heuristics are suitable for combination before combining them in the context of search. If they should be combined, it combines the heuristic scores to select a variable to branch on, otherwise, it randomly selects one of the participant heuristics to make the decision. The experiments on various benchmark problems show that PCCC can be used to combine different pairs of heuristics, and it is more robust than the participant heuristics and some classical combining strategies.
引用
收藏
页码:453 / 474
页数:22
相关论文
共 50 条
  • [41] INTEGRATING CAUSAL HEURISTICS IN A CONSTRAINT SATISFACTION MODEL
    SHULTZ, TR
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1992, 27 (3-4) : 19 - 19
  • [42] Decomposing Constraint Satisfaction Problems by Means of Meta Constraint Satisfaction Optimization Problems
    Loeffler, Sven
    Liu, Ke
    Hofstedt, Petra
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 755 - 761
  • [43] Using Learning Classifier Systems to Design Selective Hyper-Heuristics for Constraint Satisfaction Problems
    Ortiz-Bayliss, Jose C.
    Terashima-Marin, Hugo
    Conant-Pablos, Santiago E.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2618 - 2625
  • [44] Combining local search and look-ahead for scheduling and constraint satisfaction problems
    Schaerf, A
    IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 1254 - 1259
  • [45] Evolving variable-ordering heuristics for constrained optimisation
    Bain, S
    Thornton, J
    Sattar, A
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2005, PROCEEDINGS, 2005, 3709 : 732 - 736
  • [46] Evaluation of static variable ordering heuristics for MDD construction
    Drechsler, R
    ISMVL 2002: 32ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2002, : 254 - 260
  • [47] Compiling constraint satisfaction problems
    Weigel, R
    Faltings, B
    ARTIFICIAL INTELLIGENCE, 1999, 115 (02) : 257 - 287
  • [48] The approximability of constraint satisfaction problems
    Khanna, S
    Sudan, M
    Trevisan, L
    Williamson, DP
    SIAM JOURNAL ON COMPUTING, 2001, 30 (06) : 1863 - 1920
  • [49] Distance constraint satisfaction problems
    Bodirsky, Manuel
    Dalmau, Victor
    Martin, Barnaby
    Mottet, Antoine
    Pinsker, Michael
    INFORMATION AND COMPUTATION, 2016, 247 : 87 - 105
  • [50] Counting constraint satisfaction problems
    Bulatov, Andrei A.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 561 - 584